World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

LieToMe: An Ensemble Approach for Deception Detection from Facial Cues

    https://doi.org/10.1142/S0129065720500689Cited by:22 (Source: Crossref)

    Deception detection is a relevant ability in high stakes situations such as police interrogatories or court trials, where the outcome is highly influenced by the interviewed person behavior. With the use of specific devices, e.g. polygraph or magnetic resonance, the subject is aware of being monitored and can change his behavior, thus compromising the interrogation result. For this reason, video analysis-based methods for automatic deception detection are receiving ever increasing interest. In this paper, a deception detection approach based on RGB videos, leveraging both facial features and stacked generalization ensemble, is proposed. First, a face, which is well-known to present several meaningful cues for deception detection, is identified, aligned, and masked to build video signatures. These signatures are constructed starting from five different descriptors, which allow the system to capture both static and dynamic facial characteristics. Then, video signatures are given as input to four base-level algorithms, which are subsequently fused applying the stacked generalization technique, resulting in a more robust meta-level classifier used to predict deception. By exploiting relevant cues via specific features, the proposed system achieves improved performances on a public dataset of famous court trials, with respect to other state-of-the-art methods based on facial features, highlighting the effectiveness of the proposed method.

    References

    • 1. H. Luo, J. Liu, W. Fang, P. E. Love, Q. Yu and Z. Lu , Real-time smart video surveillance to manage safety: A case study of a transport mega-project, Adv. Eng. Inform. 45 (2020) 1–10. Crossref, Web of ScienceGoogle Scholar
    • 2. D. Avola, G. L. Foresti, N. Martinel, C. Micheloni, D. Pannone and C. Piciarelli , Aerial video surveillance system for small-scale uav environment monitoring, in Proc. IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS) (IEEE, Lecce, Italy, 2017), pp. 1–6. CrossrefGoogle Scholar
    • 3. D. Avola, L. Cinque, A. Fagioli, G. L. Foresti, C. Massaroni and D. Pannone , Feature-based slam algorithm for small scale uav with nadir view, in Proc. Int. Conf. on Image Analysis and Processing (ICIAP) (Springer, Cham, Trento, Italy, 2019), pp. 457–467. CrossrefGoogle Scholar
    • 4. M. Leo, G. Medioni, M. Trivedi, T. Kanade and G. Farinella , Computer vision for assistive technologies, Comput. Vis. Image Understand. 154 (2017) 1–15. Crossref, Web of ScienceGoogle Scholar
    • 5. D. Avola, L. Cinque, G. L. Foresti and M. R. Marini , An interactive and low-cost full body rehabilitation framework based on 3d immersive serious games, J. Biomed. Inform. 89 (2019) 81–100. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. D. Avola, L. Cinque, A. Fagioli, G. L. Foresti and C. Massaroni , Deep temporal analysis for non-acted body affect recognition, IEEE Trans. Affect. Comput. (2020) 1. https://doi.org/10.1109/TAFFC.2020.3003816 Crossref, Web of ScienceGoogle Scholar
    • 7. A. B. Jelodar, D. Paulius and Y. Sun , Long activity video understanding using functional object-oriented network, IEEE Trans. Multimedia 21(7) (2019) 1813–1824. Crossref, Web of ScienceGoogle Scholar
    • 8. D. Avola, M. Cascio, L. Cinque, G. L. Foresti, C. Massaroni and E. Rodol , 2d skeleton-based action recognition via two-branch stacked lstm-rnns, IEEE Trans. Multimedia 22 (2019) 10. Web of ScienceGoogle Scholar
    • 9. E. Sovetkin and A. Steland , Automatic processing and solar cell detection in photovoltaic electroluminescence images, Integr. Comput.-Aid. Eng. 26(2) (2019) 123–137. Crossref, Web of ScienceGoogle Scholar
    • 10. M. Davis, K. Markus, S. Walters, N. Vorus and B. Connors , Behavioral cues to deception vs. topic incriminating potential in criminal confessions, Law Human Behav. 29(6) (2006) 683–704. Crossref, Web of ScienceGoogle Scholar
    • 11. W. von Hippel and R. Trivers , The evolution and psychology of self-deception, Behav. Brain Sci. 34(1) (2011) 1–16. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. J. Charles, F. Bond and B. M. DePaulo , Accuracy of deception judgments, Personal. Soc. Psychol. Rev. 10(3) (2006) 214–234. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. G. Placidi, D. Avola, A. Petracca, F. Sgallari and M. Spezialetti , Basis for the implementation of an eeg-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors, Neurocomputing 160 (2015) 308–318. Crossref, Web of ScienceGoogle Scholar
    • 14. P. Gaur, K. McCreadie, R. B. Pachori, H. Wang and G. Prasad , Tangent space features-based transfer learning classification model for two-class motor imagery brain computer interface, Int. J. Neural Syst. 29(10) (2019) 1950025. Link, Web of ScienceGoogle Scholar
    • 15. H. Hou, X. Zhang and Q. Meng , Olfactory eeg signal classification using a trapezoid difference-based electrode sequence hashing approach, Int. J. Neural Syst. 30(03) (2020) 2050011. Link, Web of ScienceGoogle Scholar
    • 16. J. M. Grriz, J. Ramrez, F. Segovia, F. J. Martnez, M.-C. Lai, M. V. Lombardo, S. Baron-Cohen, and J. Suckling , A machine learning approach to reveal the neurophenotypes of autisms, Int. J. Neural Syst. 29(07) (2019) 1850058. Link, Web of ScienceGoogle Scholar
    • 17. C. Hua, H. Wang, H. Wang, S. Lu, C. Liu and S. M. Khalid , A novel method of building functional brain network using deep learning algorithm with application in proficiency detection, Int. J. Neural Syst. 29(1) (2019) 1850015. Link, Web of ScienceGoogle Scholar
    • 18. A. Ortiz, J. Munilla, F. J. Martnez-Murcia, J. M. Grriz and J. Ramrez , Empirical functional pca for 3d image feature extraction through fractal sampling, Int. J. Neural Syst. 29(02) (2019) 1850040. Link, Web of ScienceGoogle Scholar
    • 19. I. Hardiansyah, V. Pergher and M. M. Van Hulle , Single-trial eeg responses classified using latency features, Int. J. Neural Syst. 30(6) (2020) 2050033. Link, Web of ScienceGoogle Scholar
    • 20. Y. Li, W. Cui, M. Luo, K. Li and L. Wang , Epileptic seizure detection based on time-frequency images of eeg signals using gaussian mixture model and gray level co-occurrence matrix features, Int. J. Neural Syst. 28(7) (2018) 1850003. Link, Web of ScienceGoogle Scholar
    • 21. T. Wu, F.-D. Blbe, A. Pun, L. Pan and F. Neri , Simplified and yet turing universal spiking neural p systems with communication on request, Int. J. Neural Syst. 28(08) (2018) 1850013. Link, Web of ScienceGoogle Scholar
    • 22. L. Pan, G. Pun, G. Zhang and F. Neri , Spiking neural p systems with communication on request, Int. J. Neural Syst. 27(08) (2017) 1750042. Link, Web of ScienceGoogle Scholar
    • 23. P. Ekman , Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage, rev. edn. (W. W. Norton & Company, Inc., 2009), http://communicationcache.com/uploads/1/0/8/8/10887248/telling_lies-_clues_to_deceit_in_the_market-place_politics_and_marriage.pdf. Google Scholar
    • 24. M. L. Newman, J. W. Pennebaker, D. S. Berry and J. M. Richards , Lying words: Predicting deception from linguistic styles, Personal. Soc. Psychol. Bull. 29(5) (2003) 665–675. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. V. Pérez-Rosas and R. Mihalcea, Cross-cultural deception detection, in Proc. Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Baltimore, Maryland, 2014), pp. 440–445. Google Scholar
    • 26. V. Pérez-Rosas, M. Abouelenien, R. Mihalcea and M. Burzo , Deception detection using real-life trial data, in Proc. ACM on International Conference on Multimodal Interaction (ICMI) (New York, USA, 2015), pp. 59–66. CrossrefGoogle Scholar
    • 27. J. Snchez-Junquera, L. Villaseor-Pineda, M. M. y Gmez, P. Rosso and E. Stamatatos , Masking domain-specific information for cross-domain deception detection, Pattern Recogn. Lett. 135 (2020) 122–130. Crossref, Web of ScienceGoogle Scholar
    • 28. D. Avola, L. Cinque, M. De Marsico, A. Fagioli and G. L. Foresti , Lietome: Preliminary study on hand gestures for deception detection via fisher-lstm, Pattern Recogn. Lett. 138 (2020) 455–461. Crossref, Web of ScienceGoogle Scholar
    • 29. P. Ekman and W. V. Friesen , Detecting deception from the body or face, J. Personal. Soc. Psychol. 29(3) (1974) 288–298. Crossref, Web of ScienceGoogle Scholar
    • 30. P. Ekman and E. L. Rosenberg , What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS) (Oxford University Press, 1997), https://psycnet.apa.org/record/1998-07552-000. Google Scholar
    • 31. P. Ekman , Darwin, deception, and facial expression, Ann. New York Acad. Sci. 1000(1) (2003) 205–221. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. M. Zuckerman, B. M. DePaulo and R. Rosenthal , Verbal and nonverbal communication of deception, Adv. Exper. Soc. Psychol. 14 (1981) 1–59. CrossrefGoogle Scholar
    • 33. D. Avola, L. Cinque, G. L. Foresti and D. Pannone , Automatic deception detection in rgb videos using facial action units, in Proc. Int. Conf. Distributed Smart Cameras (ICDSC) (Trento, Italy, 2019), pp. 1–6. CrossrefGoogle Scholar
    • 34. T. Baltruaitis, M. Mahmoud and P. Robinson , Cross-dataset learning and person-specific normalisation for automatic action unit detection, in Proc. Int. Conf. and Workshops on Automatic Face and Gesture Recognition (FG) (IEEE, Ljubljana, Slovenia, 2015), pp. 1–6. Google Scholar
    • 35. X. Yan, F. He, Y. Zhang and X. Xie , An optimizer ensemble algorithm and its application to image registration, Integr. Comput.-Aid. Eng. 26(4) (2019) 311–327. Crossref, Web of ScienceGoogle Scholar
    • 36. K. M. R. Alam, N. Siddique and H. Adeli , A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl. 32(12) (2020) 8675–8690. Crossref, Web of ScienceGoogle Scholar
    • 37. D. H. Wolpert , Stacked generalization, Neural Netw. 5(2) (1992) 241–259. Crossref, Web of ScienceGoogle Scholar
    • 38. V. Gupta, M. Agarwal, M. Arora, T. Chakraborty, R. Singh and M. Vatsa , Bag-of-lies: A multimodal dataset for deception detection, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, Long Beach, California, 2019), pp. 1–1. CrossrefGoogle Scholar
    • 39. R. Alazrai, F. Alqasem, S. Alaarag, K. M. Ahmad Yousef and M. I. Daoud , A bispectrum-based approach for detecting deception using eeg signals, in Proc. IEEE Int. Conf. on e-Health Networking, Applications and Services (Healthcom) (IEEE, Ostrava, Czech, 2018), pp. 1–6. CrossrefGoogle Scholar
    • 40. Y. Lai, M. Chen and H. Chiang , Constructing the lie detection system with fuzzy reasoning approach, Granul. Comput. 3 (2018) 169–176. CrossrefGoogle Scholar
    • 41. J. Simpson , Functional mri lie detection: Too good to be true? J. Amer. Acad. Psychiatry Law 36(4) (2008) 491–498. Medline, Web of ScienceGoogle Scholar
    • 42. F. A. Kozel, K. A. Johnson, Q. Mu, E. L. Grenesko, S. J. Laken and M. S. George , Detecting deception using functional magnetic resonance imaging, Biol. Psychiatry 58(8) (2005) 605–613. Crossref, Medline, Web of ScienceGoogle Scholar
    • 43. E. Rusconi and T. Mitchener-Nissen , Prospects of functional magnetic resonance imaging as lie detector, Front. Human Neurosci. 7 (2013) 594. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. F. Li, H. Zhu, J. Xu, Q. Gao, H. Guo, S. Wu, X. Li and S. He , Lie detection using fnirs monitoring of inhibition-related brain regions discriminates infrequent but not frequent liars, Front. Human Neurosci. 12 (2018) 1–11. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. M. R. Bhutta, M. J. Hong, Y.-H. Kim and K.-S. Hong , Single-trial lie detection using a combined fnirs-polygraph system, Front. Psychol. 6 (2015) 1–12. Crossref, Medline, Web of ScienceGoogle Scholar
    • 46. M. R. Bhutta, K. Hong, N. Naseer and M. J. Khan , Spontaneous lie detection using functional near-infrared spectroscopy in an interactive game, in Proc. Asian Control Conference (ASCC) (IEEE, Kota Kinabalu, Malaysia, 2015), pp. 1–5. CrossrefGoogle Scholar
    • 47. Y. Zhou, H. Zhao, X. Pan and L. Shang , Deception detecting from speech signal using relevance vector machine and non-linear dynamics features, Neurocomputing 151(3) (2015) 1042–1052. Crossref, Web of ScienceGoogle Scholar
    • 48. Y. Xie, R. Liang, H. Tao, Y. Zhu and L. Zhao , Convolutional bidirectional long short-term memory for deception detection with acoustic features, IEEE Access 6 (2018) 76527–76534. Crossref, Web of ScienceGoogle Scholar
    • 49. N. Bhaskaran, I. Nwogu, M. G. Frank and V. Govindaraju , Lie to me: Deceit detection via online behavioral learning, in Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition (FG) (IEEE, Santa Barbara, CA, USA, 2011), pp. 24–29. CrossrefGoogle Scholar
    • 50. J. G. Proudfoot, J. L. Jenkins, J. K. Burgoon and J. F. Nunamaker , Deception is in the eye of the communicator: Investigating pupil diameter variations in automated deception detection interviews, in Proc. IEEE Int. Conf. on Intelligence and Security Informatics (ISI) (IEEE, Baltimore, MD, USA, 2015), pp. 97–102. CrossrefGoogle Scholar
    • 51. S. George, M. M. Manohara Pai, R. M. Pai and S. K. Praharaj , Eye blink count and eye blink duration analysis for deception detection, in Proc. Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI) (IEEE, Udupi, India, 2017), pp. 223–229. CrossrefGoogle Scholar
    • 52. L. Su and M. D. Levine , High-stakes deception detection based on facial expressions, in Proc. Int. Conf. on Pattern Recognition (ICPR) (IEEE, Stockholm, Sweden, 2014), pp. 2519–2524. CrossrefGoogle Scholar
    • 53. M. Owayjan, A. Kashour, N. Al Haddad, M. Fadel and G. Al Souki , The design and development of a lie detection system using facial micro-expressions, in Proc. Int. Conf. on Advances in Computational Tools for Engineering Applications (ACTEA) (IEEE, Beirut, Lebanon, 2012), pp. 33–38. CrossrefGoogle Scholar
    • 54. H. Karimi, J. Tang and Y. Li , Toward end-to-end deception detection in videos, in Proc. IEEE Int. Conf. Big Data (Big Data) (IEEE, Seattle, WA, USA, USA, 2018), pp. 1278–1283. CrossrefGoogle Scholar
    • 55. M. Abouelenien, V. Prez-Rosas, R. Mihalcea and M. Burzo , Detecting deceptive behavior via integration of discriminative features from multiple modalities, IEEE Trans. Inform. Forensics Secur. 12(5) (2017) 1042–1055. Crossref, Web of ScienceGoogle Scholar
    • 56. Z. Wu, B. Singh, L. S. Davis and V. S. Subrahmanian , Deception detection in videos, in Proc. AAAI Conf. on Artificial Intelligence (AI) (AAAI Press, New Orleans, Louisiana, USA, 2018), pp. 1–8. CrossrefGoogle Scholar
    • 57. R. Rill-Garca, H. J. Escalante, L. Villaseor-Pineda and V. Reyes-Meza , High-level features for multimodal deception detection in videos, in Proc. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, Long Beach, CA, USA, 2019), pp. 1565–1573. Google Scholar
    • 58. G. Krishnamurthy, N. Majumder, S. Poria and E. Cambria , A deep learning approach for multimodal deception detection, in Proc. Int. Conf. on Computational Linguistics and Intelligent Text Processing (CICLing) (Springer, Cham, Hanoi, Vietnam, 2018), pp. 1–10. Google Scholar
    • 59. T. Baltrusaitis, A. Zadeh, Y. C. Lim and L. Morency , Openface 2.0: Facial behavior analysis toolkit, in Proc. IEEE Int. Conf. on Automatic Face Gesture Recognition (FG) (IEEE, Xi’an, China, 2018), pp. 59–66. CrossrefGoogle Scholar
    • 60. W. T. Freeman and M. Roth , Orientation histograms for hand gesture recognition, in Proc. Int. Workshop on Automatic Face and Gesture Recognition (FGW), (IEEE, Zurich, Switzerland, 1995), pp. 296–301. Google Scholar
    • 61. T. Ojala, M. Pietikainen and D. Harwood , Performance evaluation of texture measures with classification based on kullback discrimination of distributions, in Proc. Int. Conf. on Pattern Recognition (ICPR) (IEEE, Jerusalem, Israel, 1994), pp. 582–585. CrossrefGoogle Scholar
    • 62. H. Wang and C. Schmid , Action recognition with improved trajectories, in Proc. IEEE Int. Conference on Computer Vision (ICCV) (IEEE, Sydney, NSW, Australia, 2013), pp. 3551–3558. CrossrefGoogle Scholar
    • 63. G. Zhao and M. Pietikainen , Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intelli. 29(6) (2007) 915–928. Crossref, Medline, Web of ScienceGoogle Scholar
    • 64. E. Rublee, V. Rabaud, K. Konolige and G. Bradski , Orb: An efficient alternative to sift or surf, in Proc. Int. Conf. on Computer Vision (ICCV) (IEEE, Barcelona, Spain, 2011), pp. 2564–2571. CrossrefGoogle Scholar
    • 65. J. Sánchez, F. Perronnin, T. Mensink and J. Verbeek , Image classification with the fisher vector: Theory and practice, Int. J. Comput. Vis. 105(3) (2013) 222–245. Crossref, Web of ScienceGoogle Scholar
    • 66. C. Cortes and V. Vapnik , Support-vector networks, Mach. Learn. 20(3) (1995) 273–297. Crossref, Web of ScienceGoogle Scholar
    • 67. H.-F. Yu, F.-L. Huang and C.-J. Lin , Dual coordinate descent methods for logistic regression and maximum entropy models, Mach. Learn. 85(1–2) (2011) 41–75. Crossref, Web of ScienceGoogle Scholar
    • 68. T. Chen and C. Guestrin , Xgboost: A scalable tree boosting system, in Proc. ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD) (New York, USA, 2016), pp. 785–794. CrossrefGoogle Scholar
    • 69. F. Murtagh , Multilayer perceptrons for classification and regression, Neurocomputing 2(5) (1991) 183–197. CrossrefGoogle Scholar
    • 70. P. Carcagnì, M. D. Coco, M. Leo and C. Distante , Facial expression recognition and histograms of oriented gradients: a comprehensive study, SpringerPlus 4(645) (2015) 1–25. MedlineGoogle Scholar
    • 71. T. Ahonen, A. Hadid and M. Pietikainen , Face description with local binary patterns: Application to face recognition, IEEE Trans. Pattern Anal. Mach. Intelli. 28(12) (2006) 2037–2041. Crossref, Medline, Web of ScienceGoogle Scholar
    • 72. S. L. Sporer and B. Schwandt , Moderators of nonverbal indicators of deception: A meta-analytic synthesis, Psychol. Public Policy Law 13(1) (2007) 1–34. Crossref, Web of ScienceGoogle Scholar
    • 73. S. Afshar and A. A. Salah , Facial expression recognition in the wild using improved dense trajectories and fisher vector encoding, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, Las Vegas, NV, USA, 2016), pp. 1517–1525. CrossrefGoogle Scholar
    • 74. H. Wang, A. Klser, C. Schmid and C. Liu , Action recognition by dense trajectories, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (IEEE, Providence, RI, USA, 2011), pp. 3169–3176. CrossrefGoogle Scholar
    • 75. G. Zhao and M. Pietikainen , Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intelli. 29(6) (2007) 915–928. Crossref, Medline, Web of ScienceGoogle Scholar
    • 76. T. Inan and U. Halici , 3-d face recognition with local shape descriptors, IEEE Trans. Inform. Forensics Secur. 7(2) (2012) 577–587. Crossref, Web of ScienceGoogle Scholar
    • 77. C. Lu and X. Tang , Surpassing human-level face verification performance on lfw with gaussian face, in Proc. AAAI Conf. on Artificial Intelligence (AI), (AAAI Press, Austin, Texas, USA, 2015), pp. 3811–3819. Google Scholar
    • 78. H. Li, T. Xu, J. Li and L. Zhang , Face recognition based on improved surf, in Proc. Int. Conf. Intelligent System Design and Engineering Applications (ISDEA) (IEEE, Hong Kong, China, 2013), pp. 755–758. CrossrefGoogle Scholar
    • 79. J. Li, T. Wang and Y. Zhang , Face detection using surf cascade, in Proc. IEEE Int. Conf. Computer Vision Workshops (ICCVW) (IEEE, Barcelona, Spain, 2011), pp. 2183–2190. Google Scholar
    • 80. G. Azzopardi, A. Greco, A. Saggese and M. Vento , Fusion of domain-specific and trainable features for gender recognition from face images, IEEE Access 6 (2018) 24171–24183. Crossref, Web of ScienceGoogle Scholar
    • 81. E. Rosten and T. Drummond , Machine learning for high-speed corner detection, in Proc. European Conf. on Computer Vision (ECCV) (Springer, Berlin, Heidelberg, 2006), pp. 430–443. CrossrefGoogle Scholar
    • 82. M. Calonder, V. Lepetit, C. Strecha and P. Fua , Brief: Binary robust independent elementary features, in Proc. European Conf. Computer Vision (ECCV) (Springer, Berlin, Heidelberg, 2010), pp. 778–792. CrossrefGoogle Scholar
    • 83. V. A, A. S. Cholin, A. D. Bhat, K. N. B. Murthy and S. Natarajan , An efficient orb based face recognition framework for human–robot interaction, Procedia Comput. Sci. 133 (2018) 913–923. CrossrefGoogle Scholar
    • 84. P. L. Rosin , Measuring corner properties, Comput. Vis. Image Understand. 73(2) (1999) 291–307. Crossref, Web of ScienceGoogle Scholar
    • 85. H. Wang, J. Hu and W. Deng , Compressing fisher vector for robust face recognition, IEEE Access 5 (2017) 23157–23165. Crossref, Web of ScienceGoogle Scholar
    • 86. Y. Martnez-Daz, Leonardo Chang, N. Hernndez, H. Mndez-Vzquez and L. E. Sucar , Efficient video face recognition by using fisher vector encoding of binary features, in Proc. Int. Conf. on Pattern Recognition (ICPR) (IEEE, Cancun, Mexico, 2016), pp. 1436–1441. CrossrefGoogle Scholar
    • 87. X. Li, X. Hong, A. Moilanen, X. Huang, T. Pfister, G. Zhao and M. Pietikainen , Towards reading hidden emotions: A comparative study of spontaneous micro-expression spotting and recognition methods, IEEE Trans. Affect. Comput. 9(4) (2018) 563–577. Crossref, Web of ScienceGoogle Scholar
    • 88. T. O. Meservy, M. L. Jensen, J. Kruse, J. K. Burgoon, J. F. Nunamaker, D. P. Twitchell, G. Tsechpenakis and D. N. Metaxas , Deception detection through automatic, unobtrusive analysis of nonverbal behavior, IEEE Intelli. Syst. 20(5) (2005) 36–43. Crossref, Web of ScienceGoogle Scholar
    • 89. Vanlalhruaia, Y. K. Singh and N. D. Singh , Binary face image recognition using logistic regression and neural network, in Proc. Int. Conf. on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (IEEE, Chennai, India, 2017), pp. 3883–3888. CrossrefGoogle Scholar
    • 90. J. Yang, F. Zhang, B. Chen and S. U. Khan , Facial expression recognition based on facial action unit, in Proc. Int. Green and Sustainable Computing Conf. (IGSC) (IEEE, Alexandria, VA, USA, 2019), pp. 1–6. CrossrefGoogle Scholar
    • 91. P. Tarnowski, M. Koodziej, A. Majkowski and R. J. Rak , Emotion recognition using facial expressions, Procedia Comput. Sci. 108 (2017) 1175–1184. CrossrefGoogle Scholar
    • 92. H. H. Thannoon, W. H. Ali and I. A. Hashim , Detection of deception using facial expressions based on different classification algorithms, in Proc. Scientific Conf. of Electrical Engineering (SCEE) (IEEE, Baghdad, Iraq, 2018), pp. 51–56. CrossrefGoogle Scholar
    • 93. J. K. Burgoon , Microexpressions are not the best way to catch a liar, Front. Psychol. 9 (2018) 1–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 94. L. Rokach , Ensemble-based classifiers, Artifi. Intelli. Rev. 33(1–2) (2010) 1–39. Crossref, Web of ScienceGoogle Scholar