World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue — Neuroengineering: from Neurosciences to Computations; Guest Editors: Diego Andina, Kunihiko Fukushima, Javier Ropero Peláez and Duc Truong Pham; Research ArticlesNo Access

Structured Pyramidal Neural Networks

    https://doi.org/10.1142/S0129065717500216Cited by:4 (Source: Crossref)

    The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.

    References

    • 1. A. M. Williams, K. Davids and J. G. P. Williams, Indirect Theories of Perception and Action, Visual Perception and Action in Sport, Chap. 1 eds. A. M. Williams and J. G. P. Williams (Routledge, New York, 2005), pp. 3–25. Google Scholar
    • 2. H. Rowley, S. Baluja and T. Kanade, Neural network-based face detection, IEEE Trans. Pattern Anal. Mach. Intell. 20(1) (1998) 23–38. Crossref, Web of ScienceGoogle Scholar
    • 3. M. D. Ganis, C. L. Wilson and J. L. Blue, Neural network-based systems for handprint OCR applications, IEEE Trans. Image Process. 7 (1998) 1097–1112. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. S. Ghosh-Dastidar and H. Adeli, Improved spiking neural networks for EEG classification and epilepsy and seizure detection, Integr. Comput.-Aided Eng. 14(3) (2007) 187–212. Crossref, Web of ScienceGoogle Scholar
    • 5. S. Ghosh-Dastidar and H. Adeli, A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection, Neural Netw. 22(10) (2009) 1419–1431. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. A. Martínez-Álvarez, R. Crespo-Cano, A. Díaz-Tahoces, S. Cuenca-Asensi, J. M. Ferrández Vicente and E. Fernández, Automatic tuning of a retina model for a cortical visual neuroprosthesis using a multiobjective optimization genetic algorithm, Int. J. Neural Syst. 26(7) (2016) 1650021. Link, Web of ScienceGoogle Scholar
    • 7. Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11) (1998) 2278–2324. Crossref, Web of ScienceGoogle Scholar
    • 8. L. Barghout and L. Lee, Perceptual information processing system, U.S. Patent Application 10/618, 543, Filed July 11, Google Patents (2004). Google Scholar
    • 9. N. R. Carlson and D. Heth, Psychology: The Science of Behaviour (Pearson Education Canada, 2010). Google Scholar
    • 10. N. R. Luque, J. A. Garrido, J. Ralli, J. J. Laredo and E. Ros, From sensors to spikes: Evolving receptive fields to enhance sensorimotor information in a robot-arm, Int. J. Neural Syst. 22(4) (2012) 1250013. Link, Web of ScienceGoogle Scholar
    • 11. A. R. Garg, K. Obermayer and B. Bhaumik, Development of feedforward receptive field structure of a simple cell and its contribution to the orientation selectivity: A modeling study, Int. J. Neural Syst. 15(1–2) (2005) 55–70. Link, Web of ScienceGoogle Scholar
    • 12. H. Adeli and S. L. Hung, Machine Learning — Neural Networks, Genetic Algorithms, and Fuzzy Systems (John Wiley & Sons, New York, NY, USA, 1995). Google Scholar
    • 13. S. Ghosh-Dastidar and H. Adeli, Spiking neural networks, Int. J. Neural Syst. 19(4) (2009) 295–308. Link, Web of ScienceGoogle Scholar
    • 14. K. Fukushima, S. Miyake and T. Ito, Neocognitron: A neural network model for a mechanism of visual pattern recognition, IEEE Trans. Syst. Man Cyber. SMC-13 (1983) 826–834. Crossref, Web of ScienceGoogle Scholar
    • 15. G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. Y. Bengio and Y. LeCun, Scaling learning algorithms towards AI, in Large Scale Kernel Machines, eds. L. Bottou, O. Chapelle, D. DeCoste and J. Weston (MIT Press, 2007), pp. 321–360. CrossrefGoogle Scholar
    • 17. D. H. Hubel, The visual cortex of the brain, Sci. Am. 209(5) (1963) 54–62. Crossref, MedlineGoogle Scholar
    • 18. S. L. Phung and A. Bouzerdoum, A pyramidal neural network for visual pattern recognition, IEEE Trans. Neural Netw. 18(2) (2007) 329–343. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. H. K. Hartline, The response of single optic nerve fibers of the vertebrate eye to illumination of the retina, Am. J. Phisiol. 121 (1938) 400–445. CrossrefGoogle Scholar
    • 20. M. Levine and J. Shefner, Fundamentals of Sensation and Perception (Oxford University Press, 2000). Google Scholar
    • 21. K. Fukushima, Artificial vision by multi-layered neural networks: Neocognitron and its advances, Neural Netw. 37 (2013) 103–119. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. B. J. T. Fernandes, G. D. C. Cavalcanti and T. I. Ren, Lateral inhibition pyramidal neural network for image classification, IEEE Trans. Cybern. 43 (2013) 2082–2092. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. C. D. Gilbert and T. N. Wiesel, Receptive field dynamics in adult primary visual cortex, Nature 356 (1992) 150–152. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. M. W. Pettet and C. D. Gilbert, Dynamic changes in receptive-field size in cat primary visual cortex, Proc. Nat. Acad. Sci. U. S. A. 89 (1992) 8366–8370. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural Comput. 1 (1989) 541–551. Crossref, Web of ScienceGoogle Scholar
    • 26. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini, The graph neural network model, IEEE Trans. Neural Netw. 20 (2009) 61–80. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. A. Quek, Z. Wang, J. Zhang and D. Feng, Structural image classification with graph neural networks, 2011 Int. Conf. Digital Image Computing: Techniques and Applications (IEEE, 2011), pp. 416–421. Google Scholar
    • 28. B. Delaunay, Sur la sphére vide. A la mémoire de Georges Voronoï, Bulletin de l’Académie des Sciences de l’URSS, Classe des sciences mathématiques et naturelles 7(6) (1934) 793–800 (in French). Google Scholar
    • 29. T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, Vol. 30 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001). CrossrefGoogle Scholar
    • 30. G. L. Foresti and F. A. Pellegrino, Automatic visual recognition of deformable objects for grasping and manipulation, IEEE Trans. Syst. Man Cybern. C, Appl. Rev. 34(3) (2004) 325–333. Crossref, Web of ScienceGoogle Scholar
    • 31. A. Ortiz, J. Górriz, J. Ramírez and D. Salas-Gonzalez, MR brain image segmentation by growing hierarchical SOM and probability clustering, Electron. Lett. 47(10) (2011) 585. Crossref, Web of ScienceGoogle Scholar
    • 32. Z. Zhao, X. Zhang and Y. Fang, Stacked multilayer self-organizing map for background modeling, IEEE Trans. Image Proc. 24 (2015) 2841–2850. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. A. Rauber, D. Merkl and M. Dittenbach, The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data, IEEE Trans. Neural Netw. 13 (2002) 1331–1341. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. C. Salge and D. Polani, Information-driven organization of visual receptive fields, Adv. Complex Syst. 12(3) (2009) 311–326. Link, Web of ScienceGoogle Scholar
    • 35. T. Najjar and O. Hasegawa, Hebbian network of selforganizing receptive field neurons as associative incremental learner, Int. J. Comput. Intell. Appl. 14(4) (2015) 1550023. Link, Web of ScienceGoogle Scholar
    • 36. H. Inoue, Self-organizing neural grove: Efficient multiple classifier system with pruned self-generating neural trees, in Constructive Neural Networks (Springer Berlin Heidelberg, 2009), pp. 281–291. CrossrefGoogle Scholar
    • 37. O. T. Yildiz and E. Alpaydin, Omnivariate decision trees, IEEE Trans. Neural Netw. 12(6) (2001) 1539–1546. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. H. Bischof, Pyramidal Neural Networks (Psychology Press, 1995). Google Scholar
    • 39. V. Cantoni and A. Petrosino, Neural recognition in a pyramidal structure, IEEE Trans. Neural Netw. 13(2) (2002) 472–480. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. Z.-H. Mao and S. G. Massaquoi, Dynamics of winner-take-all competition in recurrent neural networks with lateral inhibition, IEEE Trans. Neural Netw. 18 (2007) 55–69. Crossref, Medline, Web of ScienceGoogle Scholar
    • 41. A. M. Soares, B. J. T. Fernandes and C. J. A. Bastos-Filho, Lateral inhibition pyramidal neural networks designed by particle swarm optimization, in Artificial Neural Networks and Machine Learning – ICANN 2014. 24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014. Proceedings, eds. S. Wermter, C. Weber, W. Duch, T. Honkela, P. Koprinkova-Hristova, S. Magg, G. Palm and A. E. P. Villa, Lecture Notes in Computer Science, Vol. 8681 (Springer International Publishing, 2014), pp. 667–674. Google Scholar
    • 42. H. Adeli and S. L. Hung, A concurrent adaptive conjugate gradient learning algorithm on mimd machines, J. Supercomput. Appl. 7(2) (1993) 155–166. Crossref, Web of ScienceGoogle Scholar
    • 43. H. Adeli and S. L. Hung, An adaptive conjugate gradient learning algorithm for effective training of multilayer neural networks, Appl. Math. Comput. 62(1) (1994) 81–102. Crossref, Web of ScienceGoogle Scholar
    • 44. S. L. Hung and H. Adeli, A parallel genetic/neural network learning algorithm for MIMD shared memory machines, IEEE Trans. Neural Netw. 5(6) (1994) 900–909. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. J. A. Hartigan, Clustering Algorithms, 99th edn. (John Wiley & Sons Inc., New York, NY, USA, 1975). Google Scholar
    • 46. S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen, Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München (1991) (in German). Google Scholar
    • 47. C. M. Bishop, Neural Networks for Pattern Recognition (Clarendon, 2007). Google Scholar
    • 48. M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: The rprop algorithm, in Proc. IEEE Int. Conf. Neural Networks (1993) pp. 586–591. Google Scholar
    • 49. B. J. T. Fernandes, Redes Neurais com Extracão Implícita de Características para Reconhecimento de Padrões Visuais, Ph.D. thesis, Universidade Federal de Pernambuco (2013) (in Portuguese). Google Scholar
    • 50. A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn. 30 (1997) 1145–1159. Crossref, Web of ScienceGoogle Scholar
    • 51. J. A. Hanley and B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143(1) (1982) 29–36. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. X. H. Zhou, N. A. Obuchowski and D. K. McClish, Statistical Methods in Diagnostic Medicine, Vol. 712 (Wiley, 2011). CrossrefGoogle Scholar
    • 53. F. Wilcoxon, Individual comparisons by ranking methods, Biometr. Bull. 1 (1945) 80–83. Crossref, Web of ScienceGoogle Scholar
    • 54. J. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor and J. Vandewalle, Least Squares Support Vector Machines (World Scientific, Singapore). Google Scholar
    • 55. F. Chollet, Keras (2015), Available at: https://github.com/fchollet/keras. Google Scholar
    • 56. N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern. 9(1) (1979) 62–66. Crossref, Web of ScienceGoogle Scholar
    • 57. B. Heisele, T. Poggio and M. Pontil, Face detection in still gray images, CBCL Face Database ∖#1, Massachusetts Institute of Technology, Cambridge, MA (2000). Google Scholar
    • 58. K. Ricanek Jr. and T. Tesafaye, Morph: A longitudinal image database of normal adult age-progression, IEEE 7th Int. Conf. Automatic Face and Gesture Recognition, Southampton, UK (2006), pp. 341–345. Google Scholar
    • 59. P. Viola and M. J. Jones, Rapid object detection using a boosted cascade of simple features, Conf. Computer Vision and Pattern Recognition (2001), pp. 1-511–1-518. Google Scholar
    • 60. G. Bradski (2000) The OpenCV Library, Dr. Dobb’s Journal of Software Tools. Google Scholar
    • 61. T. Gehrig, Folds for controlled condition of gender classification (MORPH distribution) (2011), Available at http://_pa.cs.kit.edu/431.php, [Accessed on 23 May 2016]. Google Scholar
    • 62. A. Ortiz, J. Munilla, J. M. Górriz and J. Ramírez, Ensembles of deep learning architectures for the early diagnosis of the alzheimers disease, Int. J. Neural Syst. 26(7) (2016) 1650025, 27478060. Link, Web of ScienceGoogle Scholar
    • 63. W. d. A. S. e. Silva, Deteccão de Elementos Figurados do Sangue em Imagens Utilizando Comitês de Classificadores Tipo Adaboost, Master’s thesis, Universidade de Pernambuco (2015) (in Portuguese). Google Scholar
    • 64. American Society of Hematology (2012), Available at http://www.hematology.org/[accessed on 3 September 2016]. Google Scholar
    • 65. R. Labati, V. Piuri and F. Scotti, All-idb: The acute lymphoblastic leukemia image database for image processing, IEEE 18th Int. Conf. Image Processing (2011), pp. 2045–2048. Google Scholar
    • 66. M. Ahmadlou and H. Adeli, Enhanced probabilistic neural network with local decision circles: A robust classifier, Integr. Comput.-Aided Eng. 17(3) (2010) 197–210. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!