World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Discriminating Multiple Emotional States from EEG Using a Data-Adaptive, Multiscale Information-Theoretic Approach

    https://doi.org/10.1142/S0129065716500052Cited by:30 (Source: Crossref)

    A multivariate sample entropy metric of signal complexity is applied to EEG data recorded when subjects were viewing four prior-labeled emotion-inducing video clips from a publically available, validated database. Besides emotion category labels, the video clips also came with arousal scores. Our subjects were also asked to provide their own emotion labels. In total 30 subjects with age range 19–70 years participated in our study. Rather than relying on predefined frequency bands, we estimate multivariate sample entropy over multiple data-driven scales using the multivariate empirical mode decomposition (MEMD) technique and show that in this way we can discriminate between five self-reported emotions (p<0.05). These results could not be obtained by analyzing the relation between arousal scores and video clips, signal complexity and arousal scores, and self-reported emotions and traditional power spectral densities and their hemispheric asymmetries in the theta, alpha, beta, and gamma frequency bands. This shows that multivariate, multiscale sample entropy is a promising technique to discriminate multiple emotional states from EEG recordings.

    References

    • 1. E. R. John, L. S. Prichep, J. Fridman and P. Easton, Neurometrics: Computer-assisted differential diagnosis of brain dysfunctions, Science 239(4836) (1988) 162–169, doi: 10.1126/science.3336779. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. A. Choppin, EEG-based human interface for disabled individuals: Emotion expression with neural networks, Unpubl. Master’s Thesis (2000). Google Scholar
    • 3. J. D. R. Millán, R. Rupp, G. R. Müller-Putz et al., Combining brain–computer interfaces and assistive technologies: State-of-the-art and challenges, Front. Neurosci. 4 (2010) 161. Medline, Web of ScienceGoogle Scholar
    • 4. A. Nijholt, BCI for games: A “state of the art” survey, Entertainment Computing-ICEC 2008 (Springer, 2009), pp. 225–228. Google Scholar
    • 5. P. L. Nunez and B. A. Cutillo, Neocortical Dynamics and Human EEG Rhythms (Oxford University Press, USA, 1995). Google Scholar
    • 6. R. J. Davidson, Anterior cerebral asymmetry and the nature of emotion, Brain Cogn. 20(1) (1992) 125–151, doi: 10.1016/0278-2626(92)90065-T. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. M. B. Kostyunina and M. A. Kulikov, Frequency characteristics of EEG spectra in the emotions, Neurosci. Behav. Physiol. 26(4) (1996) 340–343, doi: 10.1007/bf02359037. Crossref, MedlineGoogle Scholar
    • 8. N. V. Shemiakina and S. G. Dan’ko, Influence of the emotional perception of a signal on the electroencephalographic correlates of the creative activity, Fiziol. Cheloveka 30(2) (2004) 22–29. MedlineGoogle Scholar
    • 9. M. M. Bradley and P. J. Lang, The International Affective Picture System (IAPS) in the study of emotion and attention, Handb. Emot. Elicitation Assess. (Cambridge University Press, 2007), pp. 29–46. CrossrefGoogle Scholar
    • 10. F. Murphy, I. Nimmo-Smith and A. Lawrence, Functional neuroanatomy of emotions: A meta-analysis, Cogn. Affect. Behav. Neurosci. 3(3) (2003) 207–233, doi: 10.3758/CABN.3.3.207. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. F. Schiffer, M. H. Teicher, C. Anderson et al., Determination of hemispheric emotional valence in individual subjects: A new approach with research and therapeutic implications, Behav. Brain Funct. 3(1) (2007) 13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. N. Jaušovec, K. Jaušovec and I. Gerlič, Differences in event-related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence, Neurosci. Lett. 311(2) (2001) 93–96. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. C. M. Krause, V. Viemerö, A. Rosenqvist, L. Sillanmäki and T. Åström, Relative electroencephalographic desynchronization and synchronization in humans to emotional film content: An analysis of the 4–6, 6–8, 8–10 and 10–12Hz frequency bands, Neurosci. Lett. 286(1) (2000) 9–12. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. G. Vecchiato, L. Astolfi, F. D. V. Fallani et al., Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements, Brain Topogr. 23(2) (2010) 165–179, doi: 10.1007/s10548-009-0127-0. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. V. Bekkedal MY, J. Rossi and J. Panksepp, Human brain EEG indices of emotions: Delineating responses to affective vocalizations by measuring frontal theta event-related synchronization, Neurosci. Biobehav. Rev. 35(9) (2011) 1959–1970. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. L. I. Aftanas, A. A. Varlamov, S. V. Pavlov, V. P. Makhnev and N. V. Reva, Affective picture processing: Event-related synchronization within individually defined human theta band is modulated by valence dimension, Neurosci. Lett. 303(2) (2001) 115–118. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. M. Balconi and U. Pozzoli, Arousal effect on emotional face comprehension: Frequency band changes in different time intervals, Physiol. Behav. 97(3) (2009) 455–462. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. J. Bhattacharya and H. Petsche, Universality in the brain while listening to music, Proc. R. Soc. London B Biol. Sci. 268(1484) (2001) 2423–2433. Crossref, Web of ScienceGoogle Scholar
    • 19. J. Bhattacharya, Increase of universality in human brain during mental imagery from visual perception, PLoS One 4(1) (2009) e4121, doi: 10.1371/journal.pone.0004121. Crossref, Medline, Web of ScienceGoogle Scholar
    • 20. S. J. Luck, An Introduction to the Event-Related Potential Technique (MIT Press, 2014). Google Scholar
    • 21. S. Paulmann and S. A. Kotz, An ERP investigation on the temporal dynamics of emotional prosody and emotional semantics in pseudo-and lexical-sentence context, Brain Lang. 105(1) (2008) 59–69. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. K. N. Spreckelmeyer, M. Kutas, T. Urbach, E. Altenmüller and T. F. Münte, Neural processing of vocal emotion and identity, Brain Cogn. 69(1) (2009) 121–126. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. A. L. Goldberger, C.-K. Peng and L. A. Lipsitz, What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 23(1) (2002) 23–26, doi: 10.1016/S0197-4580(01)00266-4. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. M. Bandarabadi, J. Rasekhi, C. A. Teixeira, T. I. Netoff, K. K. Parhi and A. Douardo, Early seizure detection using neuronal potential similarity: A generalized low-complexity and robust measure, Int. J. Neural Syst. 25(5) (2015) 1550019. Link, Web of ScienceGoogle Scholar
    • 25. Y. Zhang, W. Zhou and S. Yuan, Multifractal analysis and relevance vector machine based automatic seizure detection in intracranial EEG, Int. J. Neural Syst. 25(6) (2015) 1550020. Link, Web of ScienceGoogle Scholar
    • 26. S. Aydin, N. Arica, E. Ergul and O. Tan, Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements, Int. J. Neural Syst. 25(3) (2015) 1550010. Link, Web of ScienceGoogle Scholar
    • 27. M. Ahmadlou, H. Adeli and A. Adeli, Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder, J. Clin. Neurophysiol. 27(5) (2010) 328–333. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. M. Ahmadlou, H. Adeli and A. Adeli, Fractality analysis of frontal brain in major depressive disorder, Int. J. Psychophysiol. 85(2) (2012) 206–211. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. M. Ahmadlou, H. Adeli and A. Adeli, New diagnostic EEG markers of the Alzheimer’s disease using visibility graph, J. Neural Transm. 117(9) (2010) 1099–1109. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. M. Ahmadlou and H. Adeli, Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems, Phys. D Nonlinear Phenom. 241(4) (2012) 326–332. Crossref, Web of ScienceGoogle Scholar
    • 31. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. M. Ahmadlou and H. Adeli, Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder, Clin. EEG Neurosci. 42(1) (2011) 6–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. M. Ahmadlou, H. Adeli and A. Adeli, Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, J. Neurosci. Methods 211(2) (2012) 203–209. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. M. Ahmadlou, H. Adeli and A. Adeli, Graph theoretical analysis of organization of functional brain networks in ADHD, Clin. EEG Neurosci. 43(1) (2012) 5–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. L. I. Aftanas, N. V. Lotova, V. I. Koshkarov, V. P. Makhnev, Y. N. Mordvintsev and S. A. Popov, Non-linear dynamic complexity of the human EEG during evoked emotions, Int. J. Psychophysiol. 28(1) (1998) 63–76, doi: 10.1016/S01678760(97)00067-6. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. S. A. Hosseini and M. B. Naghibi-Sistani, Emotion recognition method using entropy analysis of EEG signals, Int. J. Image, Graph. Signal Process. 3(5) (2011) 30, doi: 10.5815/ijigsp.2011.05.05. CrossrefGoogle Scholar
    • 37. X. Jie, R. Cao and L. Li, Emotion recognition based on the sample entropy of EEG, Biomed. Mater. Eng. 24(1) (2013) 1185–1192, doi: 10.3233/BME-130919. Web of ScienceGoogle Scholar
    • 38. M. Costa, A. L. Goldberger and C.-K. Peng, Multiscale entropy analysis of complex physiologic time series, Phys. Rev. Lett. 89(6) (2002) 068102, doi: 10.1103/PhysRevLett.92.089803. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. J. S. Richman and J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol. 278(6) (2000) H2039–49. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. N. Rehman and D. P. Mandic, Multivariate empirical mode decomposition, Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2117) (2009) 1291–1302, doi: 10.1098/rspa.2009.0502. Crossref, Web of ScienceGoogle Scholar
    • 41. R. J. Martis, U. R. Acharya, J. H. Tan et al., Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction, Int. J. Neural Syst. 23(5) (2013) 1350023. Link, Web of ScienceGoogle Scholar
    • 42. R. J. Martis, U. R. Acharya, J. H. Tan et al., Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals, Int. J. Neural Syst. 22(6) (2012) 1250027. Link, Web of ScienceGoogle Scholar
    • 43. R. Sharma, R. B. Pachori and U. R. Acharya, Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals, Entropy 17(2) (2015) 669–691. Crossref, Web of ScienceGoogle Scholar
    • 44. M. U. Ahmed and D. P. Mandic, Multivariate multiscale entropy: A tool for complexity analysis of multichannel data, Phys. Rev. E 84(6) (2011) 061918, doi: 10.1103/PhysRevE.84.061918. Crossref, Web of ScienceGoogle Scholar
    • 45. Y. Tonoyan, D. Looney, D. P. Mandic and M. M. Van Hulle, Predicting subject performance level from EEG signal complexity when engaged in BCI paradigm, 2014 IEEE Int. Work. Mach. Learn. Signal Process. (2014), pp. 1–5, doi: 10.1109/MLSP.2014.6958897. Google Scholar
    • 46. A. Schaefer, F. Nils, X. Sanchez and P. Philippot, Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers, Cogn. Emot. 24(7) (2010) 1153–1172, doi: 10.1080/02699930903274322. Crossref, Web of ScienceGoogle Scholar
    • 47. A. L. Goldberger, C.-K. Peng and L. A. Lipsitz, What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 23(1) (2002) 23–26. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. R. J. Croft, J. S. Chandler, R. J. Barry, N. R. Cooper and A. R. Clarke, EOG correction: A comparison of four methods, Psychophysiology 42(1) (2005) 16–24, doi: 10.1111/j.1468-8986.2005.00264.x. Crossref, Medline, Web of ScienceGoogle Scholar
    • 49. A. C. Metting van Rijn, A. Peper and C. A. Grimbergen, High-quality recording of bioelectric events, Med. Biol. Eng. Comput. 29(4) (1991) 433–440. Crossref, Medline, Web of ScienceGoogle Scholar
    • 50. K. N. Ochsner and J. J. Gross, The cognitive control of emotion, Trends Cogn. Sci. 9(5) (2005) 242–249. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. W. Heller, Neuropsychological mechanisms of individual differences in emotion, personality, and arousal, Neuropsychology 7(4) (1993) 476. CrossrefGoogle Scholar
    • 52. H. J. Crawford, S. W. Clarke and M. Kitner-Triolo, Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: Laterality and regional EEG activity differences, Int. J. Psychophysiol. 24(3) (1996) 239–266. Crossref, Medline, Web of ScienceGoogle Scholar
    • 53. N. E. Huang, Z. Shen, S. R. Long et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. A Math. Phys. Eng. Sci. 454 (1971) (1998) 903–995, doi: 10.1098/rspa.1998.0193. Crossref, Web of ScienceGoogle Scholar
    • 54. T. Gautama, D. P. Mandic and M. M. Van Hulle, A differential entropy based method for determining the optimal embedding parameters of a signal, in Acoustics, Speech, and Signal Processing, 2003. Proc. (ICASSP’03). 2003 IEEE Int. Conf. Vol. 6 (IEEE, 2003), p. I-29. Google Scholar
    • 55. N. M. Laird and J. H. Ware, Random-effects models for longitudinal data, Biometrics 38 (1982) 963–974. Crossref, Medline, Web of ScienceGoogle Scholar
    • 56. G. Verbeke and G. Molenberghs, Linear Mixed Models for Longitudinal Data (Springer Science & Business Media, 2009). Google Scholar
    • 57. I. R. White, simsum: Analyses of simulation studies including Monte Carlo error, Stata J. 10(3) (2010) 369. Crossref, Web of ScienceGoogle Scholar
    • 58. S. Van Buuren, Flexible Imputation of Missing Data (CRC Press, 2012). CrossrefGoogle Scholar
    • 59. R. J. Davidson, P. Ekman, C. D. Saron, J. A. Senulis and W. V. Friesen, Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I, J. Pers. Soc. Psychol. 58(2) (1990) 330. Crossref, Medline, Web of ScienceGoogle Scholar
    • 60. M. Li and B.-L. Lu, Emotion classification based on gamma-band EEG, Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual Int. Conf. IEEE (IEEE, 2009), pp. 1223–1226. Google Scholar
    • 61. M. Balconi and C. Lucchiari, Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis, Int. J. Psychophysiol. 67(1) (2008) 41–46. Crossref, Medline, Web of ScienceGoogle Scholar
    • 62. M. Soleymani, S. Koelstra, I. Patras and T. Pun, Continuous emotion detection in response to music videos, Face Gesture 2011 (2011), pp. 803–808, doi: 10.1109/FG.2011.5771352. Google Scholar
    • 63. M. Soleymani, M. Pantic and T. Pun, Multimodal emotion recognition in response to videos, Available at: http://ibug.doc.ic.ac.uk/media/uploads/documents/tac_multimodal_emotion_recognition.pdf. [Accessed on 18 March, 2015]. Google Scholar
    • 64. A. Angrilli, P. Cherubini, A. Pavese, S. Manfredini and S. Mantredini, The influence of affective factors on time perception, Percept. Psychophys. 59(6) (1997) 972–982, doi: 10.3758/BF03205512. Crossref, MedlineGoogle Scholar
    • 65. R. Hepach, D. Kliemann, S. Grüneisen, H. R. Heekeren and I. Dziobek, Conceptualizing emotions along the dimensions of valence, arousal, and communicative frequency–implications for social-cognitive tests and training tools, Front. Psychol. 2 (2011), doi: 10.3389/fpsyg.2011.00266. Crossref, Medline, Web of ScienceGoogle Scholar
    • 66. W. B. Cannon, The James-Lange theory of emotions: A critical examination and an alternative theory, Am. J. Psychol. 39(1/4) (1927) 106–124. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!