World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
https://doi.org/10.1142/S0129055X23500277Cited by:0 (Source: Crossref)

We present two classes of examples of Hopf algebroids associated with non-commutative principal bundles. The first comes from deforming the principal bundle while leaving unchanged the structure Hopf algebra. The second is related to deforming a quantum homogeneous space; this needs a careful deformation of the structure Hopf algebra in order to preserve the compatibilities between the Hopf algebra operations.

AMSC: 81R50, 55R10, 18G45

References

  • 1. M. Atiyah, The Geometry of Yang–Mills Fields, Lezioni Fermiane (Accademia Nazionale dei Lincei e Scuola Normale Superiore, Pisa 1979). Google Scholar
  • 2. P. Aschieri, P. Bieliavsky, C. Pagani and A. Schenkel, Non-commutative principal bundles through twist deformation, Commun. Math. Phys. 352 (2017) 287–344. Crossref, ISI, ADSGoogle Scholar
  • 3. G. Böhm, Hopf Algebroids, in Handbook of Algebra, Vol. 6 (North-Holland, 2009), pp. 173–235. CrossrefGoogle Scholar
  • 4. G. Böhm and K. Szlachányi, Hopf algebroids with bijective antipodes: Axioms, integrals and duals, Commun. Algebra 32 (2004) 4433–4464. Crossref, ISIGoogle Scholar
  • 5. S. Brain and G. Landi, Moduli spaces of non-commutative instantons: Gauging away non-commutative parameters, Quart. J. Math. 63 (2012) 41–86. Crossref, ISIGoogle Scholar
  • 6. S. Brain, G. Landi and W. D. van Suijlekom, Moduli spaces of instantons on toric non-commutative manifolds, Adv. Theor. Math. Phys. 17 (2013) 1129–1193. Crossref, ISIGoogle Scholar
  • 7. T. Brzeziński and R. Wisbauer, Corings and Comodules, LMS Lecture Notes, Vol. 309 (Cambridge University Press, 2003). CrossrefGoogle Scholar
  • 8. A. Connes and M. Dubois-Violette, Non-commutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Commun. Math. Phys. 230 (2002) 539–579. Crossref, ISI, ADSGoogle Scholar
  • 9. Y. Doi and M. Takeuchi, Multiplication alteration by two-cocycles–the quantum version, Commun. Algebra 22 (1994) 5715–5732. Crossref, ISIGoogle Scholar
  • 10. A. Connes and G. Landi, Non-commutative manifolds: The instanton algebra and isospectral deformations, Commun. Math. Phys. 221 (2001) 141–159. Crossref, ISI, ADSGoogle Scholar
  • 11. G. Landi and W. D. van Suijlekom, Principal fibrations from non-commutative spheres, Commun. Math. Phys. 260 (2005) 203–225. Crossref, ISI, ADSGoogle Scholar
  • 12. X. Han and G. Landi, Gauge groups and bialgebroids, Lett. Math. Phys. 111 (2021) 140. Crossref, ISI, ADSGoogle Scholar
  • 13. K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, LMS Lecture Notes, Vol. 213 (Cambridge University Press, 2005). CrossrefGoogle Scholar
  • 14. M. A. Rieffel, Compact quantum groups associated with toral subgroups, in Representation Theory of Groups and Algebras, Contemporary Mathematics, Vol. 145 (AMS, Providence, RI, 1993), pp. 465–491. CrossrefGoogle Scholar
  • 15. P. Schauenburg, Bialgebras over non-commutative rings and a structure theorem for Hopf bimodules, Appl. Categorical Struct. 6 (1998) 193–222. Crossref, ISIGoogle Scholar
  • 16. H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990) 167–195. Crossref, ISIGoogle Scholar
  • 17. H.-J. Schneider, Representation theory of Hopf–Galois extensions, Israel J. Math. 72 (1990) 196–231. Crossref, ISIGoogle Scholar
  • 18. M. Takeuchi , Groups of algebras over A Ā. J. Math. Soc. Japan, 29 (1977) 459–492. Crossref, ISIGoogle Scholar
  • 19. J. C. Varilly, Quantum symmetry groups of non-commutative spheres, Commun. Math. Phys. 221 (2001) 511–523. Crossref, ISI, ADSGoogle Scholar
  • 20. W. C. Waterhouse, Introduction to Affine Group Schemes (Springer 1979). CrossrefGoogle Scholar