World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Peeling for tensorial wave equations on Schwarzschild spacetime

    https://doi.org/10.1142/S0129055X2350023XCited by:1 (Source: Crossref)

    In this paper, we establish the asymptotic behavior along outgoing and incoming radial geodesics, i.e. the peeling property for the tensorial Fackerell–Ipser and spin ±1 Teukolsky equations on Schwarzschild spacetime. Our method combines a conformal compactification with vector field techniques to prove the two-side estimates of the energies of tensorial fields through the future and past null infinity ± and the initial Cauchy hypersurface Σ0={t=0} in a neighborhood of spacelike infinity i0 far away from the horizon and future timelike infinity. Our results obtain the optimal initial data which guarantees the peeling at all orders.

    AMSC: 35L05, 35P25, 35Q75, 83C57

    References

    • 1. L. Andersson, T. Backdahl, P. Blue and S. Ma, Stability for linearized gravity on the Kerr spacetime, preprint (2019), arXiv:1903.03859. Google Scholar
    • 2. J. M. Bardeen and W. H. Press, Radiation fields in the Schwarzschild background, J. Math. Phys. 14 (1973) 7–19. Crossref, Web of Science, ADSGoogle Scholar
    • 3. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, Vol. 41 (Princeton University Press, 1993). Google Scholar
    • 4. D. Christodoulou, The global initial value problem in general relativity, in The Ninth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes) (World Scientific, 2002), pp. 44–54. LinkGoogle Scholar
    • 5. P. Chrusciel and E. Delay, Existence of non trivial, asymptotically vacuum, asymptotically simple space-times, Class. Quantum Grav. 19 (2002), L71–L79; Erratum, Class. Quantum Grav. 19 (2002) 3389. Google Scholar
    • 6. P. Chrusciel and E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, preprint (2003), arXiv:gr-qc/0301073. Google Scholar
    • 7. J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys. 214 (2000) 137–189. Crossref, Web of Science, ADSGoogle Scholar
    • 8. J. Corvino and R. M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, preprint (2003), arXiv:gr-qc/0301071. Google Scholar
    • 9. M. Dafermos and I. Rodnianski, The black hole stability problem for linear scalar perturbations, in The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (In 3 Volumes), eds. T. Damour et al., (World Scientific, 2012), pp. 132–189, LinkGoogle Scholar
    • 10. M. Dafermos, G. Holzegel and I. Rodnianski, The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math. 222 (2019) 1–214. Crossref, Web of ScienceGoogle Scholar
    • 11. M. Dafermos, G. Holzegel and I. Rodnianski, Boundedness and decay for the teukolsky equation on Kerr spacetimes I: The case |a| M, Ann. PDE 5(2) (2019) 1–118. Google Scholar
    • 12. M. Dafermos, G. Holzegel, I. Rodnianski and M. Taylor, The non-linear stability of the Schwarzschild family of black holes, preprint (2021), arXiv:2104.08222. Google Scholar
    • 13. H. Friedrich, Smoothness at null infinity and the structure of initial data, in The Einstein Equations and the Large Scale Behavior of Gravitational Fields, ed. P. Chrusciel and H. Friedrich (Birkhaüser, Basel, 2004), pp. 121–203. CrossrefGoogle Scholar
    • 14. E. Giorgi, Boundedness and decay for the Teukolsky system of spin 1 on Reissner–Nordström spacetime: The l = 1 spherical mode, Class. Quantum Grav. 36(20) (2019) 205001. Crossref, Web of Science, ADSGoogle Scholar
    • 15. E. Giorgi, The linear stability of Reissner–Nordström spacetime: The full subextremal range, Commun. Math. Phys. 380 (2020) 1313–1360. Crossref, Web of Science, ADSGoogle Scholar
    • 16. E. Giorgi, S. Klainerman and J. Szeftel, A general formalism for the stability of Kerr, preprint (2020), arXiv:2002.02740. Google Scholar
    • 17. E. Giorgi, S. Klainerman and J. Szeftel, Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, preprint (2022), arXiv:2205. 14808. Google Scholar
    • 18. L. M. A. Kehrberger, The case against smooth null infnity II: A logarithmically modified price’s law, preprint (2021), arXiv:2105.08084. Google Scholar
    • 19. L. M. A. Kehrberger, The case against smooth null infinity I: Heuristics and counter-examples, Ann. Henri Poincaré 23(3) (2022) 829–921. Crossref, Web of Science, ADSGoogle Scholar
    • 20. L. M. A. Kehrberger, The case against smooth null infinity III: Early-time asymptotics for higher-modes of linear waves on a Schwarzschild background, Ann. PDE 8 (2022) 117. CrossrefGoogle Scholar
    • 21. S. Klainerman and F. Nicolò, On local and global aspects of the Cauchy problem in general relativity, Class. Quantum Grav. 16 (1999) R73–R157. Crossref, Web of ScienceGoogle Scholar
    • 22. S. Klainerman and F. Nicolò, The Evolution Problem in General Relativity, Progress in Mathematical Physics, Vol. 25 (Birkhaüser, 2002). CrossrefGoogle Scholar
    • 23. S. Klainerman and F. Nicolò, Peeling properties of asymptotically flat solutions to the Einstein vacuum equations, Class. Quantum Grav. 20 (2003) 3215– 3257. Crossref, Web of Science, ADSGoogle Scholar
    • 24. S. Klainerman and J. Szeftel, Global Nonlinear Stability of Schwarzschild Spacetime Under Polarized Perturbations, Annals of Mathematics Studies, Vol. 210 (Princeton University Press, 2020). CrossrefGoogle Scholar
    • 25. S. Klainerman and J. Szeftel, Kerr stability for small angular momentum, preprint (2021), arXiv:2104.11857. Google Scholar
    • 26. H. Masaood, A scattering theory for linearised gravity on the exterior of the Schwarzschild black hole I: The Teukolsky equations, Commun. Math. Phys. 393 (2022) 477–581. Crossref, Web of Science, ADSGoogle Scholar
    • 27. S. Ma, Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field, Ann. Henri Poincaré 21 (2020) 815–863. Crossref, Web of Science, ADSGoogle Scholar
    • 28. S. Ma, Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: Linearized, Commun. Math. Phys. 377 (2020) 2489–2551. Crossref, Web of Science, ADSGoogle Scholar
    • 29. S. Ma and L. Zhang, Sharp decay for Teukolsky equation in Kerr spacetimes, Commun. Math. Phys. 401 (2023) 333–434. Crossref, Web of Science, ADSGoogle Scholar
    • 30. L. J. Mason and J.-P. Nicolas, Regularity at space-like and null infinity, J. Inst. Math. Jussieu 8(1) (2009) 179–208. Crossref, Web of ScienceGoogle Scholar
    • 31. L. J. Mason and J.-P. Nicolas, Peeling of Dirac and Maxwell fields on a Schwarzschild background, J. Geom. Phys. 62(4) (2012) 867–889. Crossref, Web of Science, ADSGoogle Scholar
    • 32. J.-P. Nicolas and T. X. Pham, Peeling on Kerr spacetime: Linear and non linear scalar fields, Ann. Henri Poincaré 20(10) (2019) 3419–3470. Crossref, Web of Science, ADSGoogle Scholar
    • 33. F. Pasqualotto, The spin ±1 Teukolsky equations and the Maxwell system on Schwarzschild, Ann. Henri Poincaré 20 (2019) 1263–1323. Crossref, Web of Science, ADSGoogle Scholar
    • 34. R. Penrose, Asymptotic properties of fields and spacetime, Phys. Rev. Lett. 10 (1963) 66–68. Crossref, Web of Science, ADSGoogle Scholar
    • 35. R. Penrose, Conformal approach to infinity, in Relativity, Groups and Topology, Les Houches 1963, eds. B. S. De Witt and C. M. De Witt (Gordon and Breach, New York, 1964), 563–584. Google Scholar
    • 36. R. Penrose, Zero rest-mass fields including gravitation: Asymptotic behavior, Proc. R. Soc. A 284 (1965) 159–203. Crossref, ADSGoogle Scholar
    • 37. R. Penrose and W. Rindler, Spinors and Space-Time, Vols. I & II, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1984 & 1986). CrossrefGoogle Scholar
    • 38. T. X. Pham, Peeling of Dirac field on Kerr spacetime, J. Math. Phys. 61 (2020) 032501. Crossref, Web of ScienceGoogle Scholar
    • 39. T. X. Pham, Conformal scattering theories for tensorial wave equations on Schwarzschild spacetime, preprint (2020), arXiv:2006.02888. Google Scholar
    • 40. R. Sachs, Gravitational waves in general relativity VI, the outgoing radiation condition, Proc. R. Soc. Lond. A 264 (1961) 309–338. Crossref, Web of Science, ADSGoogle Scholar
    • 41. R. Sachs, Gravitational waves in general relativity VIII, waves in asymptotically flat spacetime, Proc. R. Soc. Lond. A 270 (1962) 103–126. Crossref, Web of Science, ADSGoogle Scholar