Peeling for tensorial wave equations on Schwarzschild spacetime
Abstract
In this paper, we establish the asymptotic behavior along outgoing and incoming radial geodesics, i.e. the peeling property for the tensorial Fackerell–Ipser and spin Teukolsky equations on Schwarzschild spacetime. Our method combines a conformal compactification with vector field techniques to prove the two-side estimates of the energies of tensorial fields through the future and past null infinity and the initial Cauchy hypersurface in a neighborhood of spacelike infinity far away from the horizon and future timelike infinity. Our results obtain the optimal initial data which guarantees the peeling at all orders.
References
- 1. L. Andersson, T. Backdahl, P. Blue and S. Ma, Stability for linearized gravity on the Kerr spacetime, preprint (2019), arXiv:1903.03859. Google Scholar
- 2. , Radiation fields in the Schwarzschild background, J. Math. Phys. 14 (1973) 7–19. Crossref, Web of Science, ADS, Google Scholar
- 3. , The Global Nonlinear Stability of the Minkowski Space,
Princeton Mathematical Series , Vol. 41 (Princeton University Press, 1993). Google Scholar - 4. , The global initial value problem in general relativity, in The Ninth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (In 3 Volumes) (World Scientific, 2002), pp. 44–54. Link, Google Scholar
- 5. P. Chrusciel and E. Delay, Existence of non trivial, asymptotically vacuum, asymptotically simple space-times, Class. Quantum Grav. 19 (2002), L71–L79; Erratum, Class. Quantum Grav. 19 (2002) 3389. Google Scholar
- 6. P. Chrusciel and E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, preprint (2003), arXiv:gr-qc/0301073. Google Scholar
- 7. , Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys. 214 (2000) 137–189. Crossref, Web of Science, ADS, Google Scholar
- 8. J. Corvino and R. M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, preprint (2003), arXiv:gr-qc/0301071. Google Scholar
- 9. , The black hole stability problem for linear scalar perturbations, in The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (In 3 Volumes), eds. T. Damour , (World Scientific, 2012), pp. 132–189, Link, Google Scholar
- 10. , The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math. 222 (2019) 1–214. Crossref, Web of Science, Google Scholar
- 11. , Boundedness and decay for the teukolsky equation on Kerr spacetimes I: The case , Ann. PDE 5(2) (2019) 1–118. Google Scholar
- 12. M. Dafermos, G. Holzegel, I. Rodnianski and M. Taylor, The non-linear stability of the Schwarzschild family of black holes, preprint (2021), arXiv:2104.08222. Google Scholar
- 13. ,
Smoothness at null infinity and the structure of initial data , in The Einstein Equations and the Large Scale Behavior of Gravitational Fields, ed. P. Chrusciel and H. Friedrich (Birkhaüser, Basel, 2004), pp. 121–203. Crossref, Google Scholar - 14. , Boundedness and decay for the Teukolsky system of spin on Reissner–Nordström spacetime: The spherical mode, Class. Quantum Grav. 36(20) (2019) 205001. Crossref, Web of Science, ADS, Google Scholar
- 15. , The linear stability of Reissner–Nordström spacetime: The full subextremal range, Commun. Math. Phys. 380 (2020) 1313–1360. Crossref, Web of Science, ADS, Google Scholar
- 16. E. Giorgi, S. Klainerman and J. Szeftel, A general formalism for the stability of Kerr, preprint (2020), arXiv:2002.02740. Google Scholar
- 17. E. Giorgi, S. Klainerman and J. Szeftel, Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes, preprint (2022), arXiv:2205. 14808. Google Scholar
- 18. L. M. A. Kehrberger, The case against smooth null infnity II: A logarithmically modified price’s law, preprint (2021), arXiv:2105.08084. Google Scholar
- 19. , The case against smooth null infinity I: Heuristics and counter-examples, Ann. Henri Poincaré 23(3) (2022) 829–921. Crossref, Web of Science, ADS, Google Scholar
- 20. , The case against smooth null infinity III: Early-time asymptotics for higher-modes of linear waves on a Schwarzschild background, Ann. PDE 8 (2022) 117. Crossref, Google Scholar
- 21. , On local and global aspects of the Cauchy problem in general relativity, Class. Quantum Grav. 16 (1999) R73–R157. Crossref, Web of Science, Google Scholar
- 22. , The Evolution Problem in General Relativity,
Progress in Mathematical Physics , Vol. 25 (Birkhaüser, 2002). Crossref, Google Scholar - 23. , Peeling properties of asymptotically flat solutions to the Einstein vacuum equations, Class. Quantum Grav. 20 (2003) 3215– 3257. Crossref, Web of Science, ADS, Google Scholar
- 24. , Global Nonlinear Stability of Schwarzschild Spacetime Under Polarized Perturbations,
Annals of Mathematics Studies , Vol. 210 (Princeton University Press, 2020). Crossref, Google Scholar - 25. S. Klainerman and J. Szeftel, Kerr stability for small angular momentum, preprint (2021), arXiv:2104.11857. Google Scholar
- 26. , A scattering theory for linearised gravity on the exterior of the Schwarzschild black hole I: The Teukolsky equations, Commun. Math. Phys. 393 (2022) 477–581. Crossref, Web of Science, ADS, Google Scholar
- 27. , Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole I: Maxwell field, Ann. Henri Poincaré 21 (2020) 815–863. Crossref, Web of Science, ADS, Google Scholar
- 28. , Uniform energy bound and Morawetz estimate for extreme components of spin fields in the exterior of a slowly rotating Kerr black hole II: Linearized, Commun. Math. Phys. 377 (2020) 2489–2551. Crossref, Web of Science, ADS, Google Scholar
- 29. , Sharp decay for Teukolsky equation in Kerr spacetimes, Commun. Math. Phys. 401 (2023) 333–434. Crossref, Web of Science, ADS, Google Scholar
- 30. , Regularity at space-like and null infinity, J. Inst. Math. Jussieu 8(1) (2009) 179–208. Crossref, Web of Science, Google Scholar
- 31. , Peeling of Dirac and Maxwell fields on a Schwarzschild background, J. Geom. Phys. 62(4) (2012) 867–889. Crossref, Web of Science, ADS, Google Scholar
- 32. , Peeling on Kerr spacetime: Linear and non linear scalar fields, Ann. Henri Poincaré 20(10) (2019) 3419–3470. Crossref, Web of Science, ADS, Google Scholar
- 33. , The spin Teukolsky equations and the Maxwell system on Schwarzschild, Ann. Henri Poincaré 20 (2019) 1263–1323. Crossref, Web of Science, ADS, Google Scholar
- 34. , Asymptotic properties of fields and spacetime, Phys. Rev. Lett. 10 (1963) 66–68. Crossref, Web of Science, ADS, Google Scholar
- 35. ,
Conformal approach to infinity , in Relativity, Groups and Topology, Les Houches 1963, eds. B. S. De Witt and C. M. De Witt (Gordon and Breach, New York, 1964), 563–584. Google Scholar - 36. , Zero rest-mass fields including gravitation: Asymptotic behavior, Proc. R. Soc. A 284 (1965) 159–203. Crossref, ADS, Google Scholar
- 37. , Spinors and Space-Time, Vols. I & II,
Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1984 & 1986). Crossref, Google Scholar - 38. , Peeling of Dirac field on Kerr spacetime, J. Math. Phys. 61 (2020) 032501. Crossref, Web of Science, Google Scholar
- 39. T. X. Pham, Conformal scattering theories for tensorial wave equations on Schwarzschild spacetime, preprint (2020), arXiv:2006.02888. Google Scholar
- 40. , Gravitational waves in general relativity VI, the outgoing radiation condition, Proc. R. Soc. Lond. A 264 (1961) 309–338. Crossref, Web of Science, ADS, Google Scholar
- 41. , Gravitational waves in general relativity VIII, waves in asymptotically flat spacetime, Proc. R. Soc. Lond. A 270 (1962) 103–126. Crossref, Web of Science, ADS, Google Scholar