World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Chapter 11: Reinforcement Learning and Sequential QAP-Based Graph Matching for Semantic Segmentation of Images

    https://doi.org/10.1142/9789811289125_0011Cited by:0 (Source: Crossref)
    Abstract:

    This chapter addresses the fundamental task of semantic image analysis by exploiting structural information (spatial relationships between image regions). We propose to combine a deep neural network (DNN) with graph matching (formulated as a quadratic assignment problem (QAP)) where graphs encode efficiently structural information related to regions segmented by the DNN. Our novel approach solves the QAP sequentially for matching graphs, in the context of image semantic segmentation, where the optimal sequence for graph matching is conveniently defined using reinforcement learning (RL) based on the region membership probabilities produced by the DNN and their structural relationships. Our RL-based strategy for solving QAP sequentially allows us to significantly reduce the combinatorial complexity for graph matching. Two experiments are performed on two public datasets dedicated respectively to the semantic segmentation of face images and sub-cortical region of the brain. Results show that the proposed RL-based ordering performs better than using a random ordering, especially when using DNNs that have been trained on a limited number of samples. The open-source code and data are shared with the community.