World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Recent results and perspectives on cosmic backgrounds from radio to far-infrared

    https://doi.org/10.1142/9789811258251_0014Cited by:0 (Source: Crossref)
    Abstract:

    Cosmological and astrophysical surveys from radio to far-infrared, in both temperature and polarization, offer a unique view of the Universe properties and of the formation and evolution of its structures. The last release, close to be finalized, of the Planck mission results sets the scene for cosmological models and parameters, while the comparison with other types of data sets raises the issue of possible tensions about some parameters, first of all the Hubble constant. At the same time, on the extragalactic side, Planck carried out the deepest systematic all-sky survey of SZ galaxy clusters and detected thousands of dusty galaxies and many hundreds of extragalactic radio sources, also allowing us to investigate many specific topics, including molecular hydrogen clouds in galactic halos. The exploitation of future generation of CMB missions and the next radio facilities will allow us to deeply investigate several topics in cosmology and astrophysics, from the existence of primordial gravitational waves to the energy releases in the primeval plasma, from the dawn ages and the epoch of reionization to the formation and evolution of early galaxies and clusters, while a wide set of open astrophysical problems can be studied with future IR missions.

    Based on talks presented at the Fourteenth Marcel Grossmann Meeting on General Relativity, Rome, July 2015.