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During this rapid development of wind energy aiming to combat climate change worldwide,
there is greater need to avoid, reduce, and compensate for impacts on wildlife: Through the
effective use of mitigation, wind energy can continue to expand while reducing impacts. This
is a first broad step into discussing and understanding mitigation strategies collectively,
identifying the current state of knowledge and be a beneficial resource for practitioners
and conservationists. We review the current state of published knowledge, both land-based
and offshore, with a focus on wind energy–wildlife mitigation measures. We state measures
and highlight their objective and discuss at which project stage it is most effective (e.g.
planning, construction, and operation). Thereafter, we discuss key findings within current
wind energymitigation research, needing improved understanding into the efficacy ofwildlife
mitigation as well as research into the cost aspects of mitigation implementation. This paper is
divided into two articles; Part 1 focuses on mitigation measures during planning, siting, and
construction, while Part 2 focuses on measures during operation and decommissioning.
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Introduction

The concern of global climate change has benefitted wind energy as a source of
electricity generation which produces minimal carbon emissions or air pollution,
does not require water withdrawal and consumption, and does not cause devas-
tating effects on wildlife and their habitats (AWWI, 2015). However, this ‘green
energy’ is not completely green as there are some adverse effects on wildlife like
displacement, habitat fragmentation, collision, and direct mortality (Gartman et al.,
2014). There are basic principles behind mitigation (Köppel et al., 2014) that
avoid, reduce, and compensate for impacts from wind energy development. These
principles lay the groundwork for measures to be addressed in the making of
environmental impact assessments and biological assessments; they can be applied
at national or regional scales (e.g. macro-siting requirements) while others can be
applied at the local scale where measures are species- or situation-specific (e.g.
deterrence measures) (Mascarenhas et al., 2015). While research has focused more
on flight behaviour, disturbance, and impacts than on methods to reduce dis-
placement and collision mortality, there has been a recent shift in evaluating
mitigation techniques and their effectiveness to reducing these impacts. This paper
provides an opportunity to comprehensively understand where current practice and
research lie for mitigation measures in wind energy development, aiming to see
where further research is needed, and to help answer the question, ‘What’s next?’
in this field. This paper is to help not only developers, planners, and biologists
grasp a better understanding of the use of mitigation in wind energy but also to
help researchers pinpoint where research is further needed.

It is important to collectively show what consolidated and agreed upon knowl-
edge exists (cf. Schuster et al., 2015) and where further research is needed in
understanding the efficacy of mitigation measures. This is our aim for both land-
based and offshore wind facilities and for the most relevant species groups, in-
cluding local and migratory bats, migratory and land-based birds, raptors, seabirds,
as well as non-volant (e.g. non-flying) species such as marine mammals, terrestrial
mammals, reptiles, and amphibians. While enormous efforts have been made off-
shore for mitigation (e.g. sound reduction during pile-driving), offshore collisions
are poorly understood, thus challenging which mitigation measures are most fea-
sible and effective (Hill, 2015).

Recent publications have given beneficial comprehensive lists of either impacts
on wildlife or mitigation for particular species groups (cf. Schuster et al., 2015; May
et al., 2015; Mascarenhas et al., 2015; Vaissière et al., 2014; Marques et al., 2014;
Lovich and Ennen, 2013). However, this paper solely concentrates on a mitigation
measure’s effectiveness based on empirical evidence (or lack thereof), and the
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remaining gaps for all species land-based and offshore. We provide a synoptical
table showing mitigation categories (Fig. 1) and classify their associated research
on relevant species groups. Research was conducted by the Environmental As-
sessment and Planning Research Group at the Berlin Institute of Technology (TU
Berlin) and funded by the German Federal Ministry (BMWi) as part of the ‘Impacts
of Wind Energy Development on Wildlife — An International Synopsis’ project.

It is also essential to know that mitigation measures are case-by-case sensitive
as they are species- and site-specific, thus monitoring before–after control-impact
(BACI) of measures and basing decisions on research using the BACI monitoring
design (Stewart-Oaten et al., 1986) is highly recommended to ensure the best
efficacy to reduce impacts to wildlife. There have been beneficial meeting pro-
ceedings, technical reports, and guidance from e.g. the US National Wind Coor-
dinating Committee ‘Toolbox’ (NWCC Mitigation Subgroup and Rechtenwald,
2007), European Commission (Sundseth, 2011), United Kingdom’s COWRIE
Ltd.’s Offshore Reports, and Germany’s Fachagentur Windenergie an Land (TU
Berlin et al., 2015) all aiming to implement mitigation measures more efficiently.

Methodology

Through a qualitative review process, we analysed international research involving
mitigation measures for wildlife in the wind energy field. The overview of all
mitigation measures is based on over 250 documents ranging from scientific (106
peer-reviewed journal articles and books) to grey literature (reports, articles, web-
sites, and guidances) and to review contributions of recent international conferences
such as: Conference on Wind Energy and Wildlife Impacts (CWW2011, Trond-
heim, Norway); Conference on Wind Power and Environmental Impacts
(CWE2013, Stockholm, Sweden);WinMon.BE Conference: Environmental Impact
of Offshore Wind Farms (2013, Brussels, Belgium); StUKplus Conference: Five
Years of Ecological Research at Alpha Ventus (2013, Berlin, Germany); and
Conference on Wind Energy and Wildlife Impacts (CWW2015, Berlin, Germany).
In addition, as Germany is a major wind developer on a global scale, we include
German references in the paper to help developers, wildlife experts, and researchers
further understand current German research practices that would otherwise be dif-
ficult to access.

This paper covers publications up to late-2015. We used Google Scholar, Web
of Science, Science Direct, and TETHYS (an online knowledge management
platform for relevant publications, http://tethys.pnnl.gov) and in a broad-termed
approach due to scarce empirical research pertaining to the efficacy of mitigation
measures for all wildlife in wind energy, both land-based and offshore. As seen in
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Appendix A, our research originally focused only on peer-reviewed articles and
published books. However, we extended our search to include reports and grey
literature as significant gaps were seen in peer-reviewed literature but were
therefore substantiated through grey literature (e.g. land management and visi-
bility). As this synoptical paper provides the current state of the overall knowledge
on mitigation measures, this inclusion of grey literature is necessary.

Based on the reviewed literature, we categorised eleven mitigation types with
their particular measures that can be seen in Fig. 1. Our focus lies mainly within
avoidance and minimisation measures used in wind energy development. This
paper (Part 1) focuses on planning, siting, and construction mitigation measures,
and its sister article (Part 2) focuses operational and decommissioning mitigation
measures. We exclude the discussion of in-lieu fees or any monetary reparations as
well as excluding the discussion of policies allowing the risk of species collision
acceptable under certain conditions (e.g. US Incidental Take Permits) and com-
pensatory mitigation. Lastly, while it is essential to note the importance of mon-
itoring as mitigation is based heavily on the research collected during monitoring
periods, it will not be covered in this paper.

Fig. 1. Mitigation measure classification.
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As stated previously, Appendix A shows the peer-reviewed state of research
based on the source, species group, and discussion type. Once a source has been
categorised under the appropriate mitigation measure and species type, it then falls
within a ‘recommendation’, ‘observation’, or ‘investigation’ category. For in-
stance, if a source investigates impacts from wind energy on a particular species or
species group and suggests a mitigation measure in order to avoid or reduce the
impact researched, the source would fall under ‘recommendation.’ The source’s
research does not observe the mitigation measure nor provide empirical evidence
as to the efficacy of the measure. A source is more significant as an ‘observation’
when the research monitors or literally observes wildlife effects based on the
implemented mitigation measure. Lastly, a source categorised as ‘investigation’ is
most significant in this paper as research directly focuses on a mitigation measure,
providing empirical and/or even statistical evidence as to the efficacy of the
measure and possibilities for improvement. While we provide information about
the significance of the sources, we cannot take a step further explicitly listing
which measures are and are not effective as the number of significant sources is
insufficient and effectiveness is always case-specific.

Sections 3–11 provide further detailed discussion of each measure as shown in
Fig. 1; first, we provide what is the objective of the measure and its submeasures,
then we provide current research based on the species groups.

Macro-Siting

Mitigation should first begin in the planning phase when selecting a location for a
wind facility, otherwise known as macro-siting. For developers having to undergo
an Environmental Assessment (EA), Environmental Impact Assessment (EIA), or
Strategic Environmental Assessment (SEA), this stage primarily occurs in the
scoping phase at the beginning of a project timeline, providing a framework for the
entirety of the project (Turvey, 2015; Geißler, 2013). During this stage, pre-
construction mitigation options are available in order to avoid high-risk areas
(Arnett, 2015). Wind facilities should to be placed in locations of low spatial
resistance, planned away from conservation areas, and strategically positioned
based on the topography of the area or specific landscape elements that constitute
high habitat quality for wildlife in order to decrease negative impacts (Ledec et al.,
2011; TU Berlin et al., 2015; Drewitt and Langston, 2008). Macro-siting is ef-
fective, for instance, for migratory birds who move from breeding to non-breeding
grounds and are dependent on weather patterns with topographical features (e.g.
coastlines, straits, mountain ranges, and passes) being their ‘roadmaps’; thus, it is

Mitigation Measures for Wildlife in Wind Energy Development: Part 1

1650013-5

J.
 E

nv
. A

ss
m

t. 
Po

l. 
M

gm
t. 

20
16

.1
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
O

R
T

H
 T

E
X

A
S 

on
 0

1/
13

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



important to avoid high-concentration areas where spatial and temporal distribu-
tion of these species is known (Liechti et al., 2013).

Use areas of low spatial resistance

Areas of low spatial resistance are environments which allow structures, e.g. wind
turbines, to be built as they would not present restrictions of movement or day-to-day
activities to sensitive species. When surveying for these areas, broad geographical
planning for a wind energy project can be most effective in avoiding impacts on
nature, e.g. displacement, and to reduce future risk of problems during later stages of
the project (Marques et al., 2014). For birds and bats, Johnson et al. (2007)
recommends selecting sites away from major bird feeding, roosting, and resting
areas, as well as wetlands, rookeries, and low-level flight paths. Focus should also be
on micro-habitats for birds such as swales, ridge-tops, canyons, and rims (Johnson
et al., 2007). Obermeyer et al. (2011) recommends siting wind turbines in agricul-
tural areas as they represent low-quality habitats which can be difficult supporting at-
risk species and other wildlife or natural plants. This is broadly recommended by the
American Wind Energy Association to use lower-quality habitats such as active
agriculture and row crop lands, managed pastures, brownfield or industrial sites,
fragmented landscapes, and disturbed rangelands (Giovanello and Kaplan, 2008).
For bats, Rodrigues et al. (2014) further state forests, wetland, and hedgerow net-
works, habitat features such as individual trees, waterbodies, and water courses need
to be taken into account, as well as large river valleys for migratory bats as popu-
lations are larger in these areas. Another recommendation by Northrup and Wit-
temyer (2013) for non-migratory bats is to avoid siting near known bat colonies and
their surrounding habitats that are used for foraging and nesting. This is also appli-
cable to breeding and resting birds as foraging, nesting, and soaring areas (i.e. their
spatial concurrence as observed by Bright et al. (2008)) need to be taken into account.

It is recommended by EUROBATS to not install turbines in forested areas or
within 200m of these areas (Rodrigues et al., 2014), but as the erection of turbines
in forested areas in European countries like Germany continues, research is
needed. Empirical research in this topic is minimal, but recommendations from
these studies have proven beneficial and are used in national guidelines such as US
Fish and Wildlife Service (USFWS) (2012) ‘Land-Based Wind Energy Guide-
lines’, Scotland’s ‘Scottish National Heritage Spatial Planning for Onshore Wind
Turbines — Natural Heritage Considerations’ Turvey (2015), or in regional
guidelines such as in Germany, ‘Guidelines for species and habitat protection in
the planning and approval of wind turbines in North Rhine-Westphalia’ (trans-
lated) (MKULNV and LANUV, 2013).
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Research investigating methods on how to properly site locations based on
wildlife is minimal and there is even less on the success of macro-siting measures
to avoid wildlife displacement. Understanding how species are adapting to facility
buffers is needed, as only one investigation by Madsen and Boertmann (2008)
concluded that pink-footed geese (Anser brachyrhynchus) habituate to small-scale
wind farms, as displacement distances diminished and began foraging within the
wind farm. Tellería (2009) studied migratory wood pigeons (Columba palumbus)
migrating through Spain to depict their movements and see if their flow of
movement crossed various concentrations of wind facilities in the country. He
recorded that a majority of pigeons (50%) was concentrated in a 50 km wide
central belt with few wind facilities but the adjacent belt with considerable number
of wind facilities recorded 30% of the ringed pigeons (Tellería, 2009). Conclu-
sively, these two 100 km bands contained 80% of these migratory birds, giving
better claim that all potential construction sites for wind energy need to be more
effectively considered, not only at local levels but at national, and even interna-
tional levels in order to prevent cumulative effects of wind farms on migratory
birds (Tellería, 2009).

For offshore wind farm (OWF) development, locating areas of importance
offshore can be difficult as the distribution of concentrations, variability in num-
bers, and times of occurrence vary for multiple species. In addition, marine species
are highly mobile and have wide distributions, such as the harbour porpoise
(Phocoena phocoena) in the North Sea. Thus, pre-construction habitat use in
European seas has been researched for seabirds (Drewitt and Langston, 2006;
Bellebaum et al., 2010; Loring et al., 2014), migrating birds (Loring et al., 2014;
Bellebaum et al., 2010), harbour porpoises (Scheidat et al., 2012), and harbour
seals (Phoca vitulina) (Brasseur et al., 2012) in order to provide distribution
information for siting OWF. Europe already has some legislative constraints in
terms of siting including: Minimum distances from areas of environmental inter-
est; residential and productive activities (i.e. tourism and farming); infrastructure
networks (i.e. voltage lines); ports; and already established nature reserve sites (i.e.
NATURA 2000 areas) (Spiropoulou et al., 2015; Commission of the European
Communities, 2008). Yet OWFs are not generally excluded from protected areas
and marine activities such as fisheries, shipping, and military uses, which can
cumulatively cause large-scale disturbance and habitat loss for sensitive species,
such as the common loon (Kubetzki et al., 2011; Aumüller et al., 2013). Marine
spatial planning varies depending on the geographical location and country as well
as the need for other human activities (e.g. fishing and tidal energy). Conclusively,
investigative research into offshore wind development mitigation is difficult be-
cause there is a lack of proper technology and planning to monitor effects of
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mitigation. While it is recommended by Hill (2015) and Aumüller et al. (2013) to
establish large migration corridors between the wind facilities for migrating wa-
terfowl and passerines, or just a minimum distance between OWFs for all mi-
grating birds, we lack research results into migration corridor size. Kubetzki et al.
(2011) recommend avoiding coastal areas and straits, as flight intensity of mi-
grating birds is very high. Identifying sensible areas for marine spatial planning
underwater is recently being done through benthic monitoring (Dannheim et al.,
2015), helping developers, stakeholders, and authorities better establish locations
for future OWF.

Macro-siting research for non-volant onshore species is nominal. Through an
observation by Lovich et al. (2011) and Lovich and Ennen (2011), they explain
how site selection for renewable energy is a critical factor in minimising negative
effects on the US Mojave desert tortoise (Gopherus agassizii). Skarin et al. (2013)
heed caution to wind facility planning for reindeer (Rangifer tarandus) as their
habitat is already very fragmented and wind facilities could influence habitat use
and range use, movement corridors, and their surrounding areas. However, it has
been noted of this species to acclimatise to wind turbines (Colman et al., 2012;
May et al., 2012).

Avoid sensitive areas

Macro-siting also entails avoiding conservation areas, nature reserves, national
parks, and in general, federally protected areas (Manville II, 2005; Drewitt and
Langston, 2006). These are areas of high species or animal abundance, or where
threatened species or those likely prone to collision are present (Marques et al.,
2014). Drewitt and Langston (2006) further this by ensuring key areas of conser-
vation importance and sensitivity are avoided. Buffer zones are recommended
(Arnett and Baerwald, 2013) to ensure sufficient distance between these conservation
areas and the wind facility. Norway’s Smøla wind facility has provided beneficial
impact studies for research demonstrating negative impacts on the breeding success
of bird species (namely white-tailed eagles (Haliaeetus albicilla)) and relay the
importance to identify important breeding areas during pre-construction (Dahl et al.,
2015). Avoidance of these areas in macro-siting has been considered ‘common
knowledge’ for land and wind energy developers and while no investigative research
has been specifically done regarding this topic, it is necessary in the planning stages.

Strategic planning at local or regional levels should be based on animal
populations, their preferred habitats and flight paths, and sensitive topographic
locations (Marques et al., 2014). Based on International and EU legislation, off-
shore spatial marine planning can be established in all EU coastal nations and can
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be used to pinpoint specific locations of areas of low spatial resistance for OWF
development. This can be seen in Scotland, where they have developed a Sectoral
Marine Plan in which six offshore wind energy sites could be leased upon gov-
ernment agreement (Davies and Pratt, 2014).

For bird species that use landscape elements for migration and hunting or
foraging grounds, it is often recommended to avoid siting wind farms in sensitive
areas. One approach of identifying those areas can be studies on their home range
via visual observations or telemetric studies. According to Mammen et al. (2014),
the larger the distance between nesting sites and wind farms and consequently the
overlap of home range and wind farm, the smaller the collision risk. For the red
kite (Milvus milvus), they specify and recommend a buffer zone of 1250m around
refuges for example. Other authors (Pfeiffer and Meyburg, 2015) point out the
correlation between home range size and food availability (being an indicator for
habitat quality), making it difficult to generalise such recommendations. Grajetzky
and Nehls (2014) investigated displacement of Montagu’s harrier (Circus
pygargus), recommending that as these species do not avoid wind farms, it is
important to take into account their breeding sites as they fly within the ‘hazard
zone’ of the rotor swept area near their nesting sites and to establish distances
along their flight corridors to food areas. They also state a 300m distance around
turbines be kept free of field crops attractive as breeding habitats, especially in
intensively agriculture landscapes with few structures (Grajetzky and Nehls,
2014). For the Australia crane (Grus rubicunda), Hill et al. (2011) generally
recommend adopting turbine-free buffers around essential breeding and flocking
habitats. Facilities, or more specifically wind turbines, should be in areas unat-
tractive for raptors, siting away from cliff and rim edges, dips and along ridges,
and small mammal colonies (Manville II, 2005). Risk is reduced when placing
turbines away from ridge edges (as investigated for the bearded vulture [as in-
vestigated for the regionally Endangered bearded vulture Grypaetus barbatus
meridionalis] and the globally vulnerable southern African endemic cape vulture
(Gyps coprotheres) in South Africa and Lesotho) not only for raptors (Johnson
et al., 2007), but for bats as well (Rodrigues et al., 2006) as these ridges create an
updraft many species use when flying. Similar observation in Spain was done by
de Lucas et al. (2008) for raptors and the griffon vulture (Gyps fulvus) as bird
collisions can be dependent on elevation above sea level and to avoid placing
turbines on tops of hills with gentle slopes.

For bats, they also move along linear structures such as rivers and river valleys
(Furmankiewicz and Kucharska, 2009) as well as forest edges and hedges (as
observed by Kelm et al. (2014)). Other places include older trees with cavities
currently being preserved (Peste et al., 2015), or nurseries, winter quarters, and
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sleeping places (Arnett and Baerwald, 2013; Minderman et al., 2012). Rodrigues
et al. (2006, 2014) further complements recommendations to avoid narrow mi-
gration routes as well as concentrated feeding, breeding, and roosting areas.
Johnson et al. (2004) investigated that distances to trees and forests may have
effects on fatalities as bat activity decreases with distance from forests.

As stated previously, while little investigative or observational research in the
topic has been published thus far, the number of recommendations has been
influential in wind energy guidance and even legal spatial planning documents.
The USFWS (2012) recommends that new wind energy development be sited
outside of an 8 km buffer zone around active greater prairie chicken (Tympanuchus
cupido) leks (i.e. community sites). Recent investigation by Winder et al. (2015)
confirm that both male and female greater prairie chickens have negative beha-
vioural responses to wind energy development within 8 km of turbines. Similar
impacts are said for the lesser prairie chicken (Tympanuchus pallidicinctus), but
lack clear recommendation in avoiding their already significantly-reduced habitat;
Pruett et al. (2009) recommend the need to conserve and connect their habitat
ranges and to provide legal guidance in wind turbine placement. Similar is
recommended for sage grouse (Centrocercus urophasianus) by (LeBeau et al.,
2014) to place turbines at least 5 km from nesting and brood-rearing habitats in
order to minimise wind development impacts. In UK, through Natural England’s
interim guidance, it is advised that blade tips of turbines are to be at least 50m
from the highest part of hedges, tree-lines, or woodlands in the vicinity or any
habitat features or structures suitable for roosting (Mitchell-Jones and Carlin,
2014). These measures recommended from official guidances can be beneficial for
developers to establish measureable distances so as to minimise additional permits
or licenses, or be required to carry out additional working practices or necessary
precautions as to avoid breaking any laws or regulations (Mitchell-Jones, 2004).

The use of sensitivity maps has proven a beneficial tool in informing decision-
makers in the planning stages about the potential conflicts with migratory species
(Liechti et al., 2013). Switzerland (Aschwanden et al., 2005, 2013) and Scotland
(Bright et al., 2008) have invested in this concept onshore for identifying areas in
their countries where wind facilities may pose a medium to high risk to important
bird populations. Local authorities and wind planners can use up-to-date infor-
mation on endangered or threatened species and be able to pinpoint exact locations
where developing a wind facility is most feasible (The RSPB, 2006). Offshore,
coastal and marine habitats are highly dynamic but sensitive areas can be identified
as well. Garthe and Hüppop (2004) established a wind farm sensitivity index
which calculates different species’ attributes such as flight activity, population
size, and flexibility in habitat use. This index shows for the Southeastern North Sea
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that coastal waters are of greater vulnerability than waters further offshore
throughout the whole year. Bradbury et al. (2014) established a Seabird Mapping
and Sensitivity Tool (SeaMaST) in English territorial waters, and a similar map of
avian hotspots was developed by Zipkin et al. (2015) for the US Atlantic Ocean
combining statistical data on species and seasonal distribution.

Another integrative approach is the use of local zoning maps for particular spe-
cies’ local population, where an area is categorised into zones of high, medium, low,
or no risk and can guide developers in proper macro-siting (TU Berlin et al., 2015).
The use of local land-use plans is growing in Germany and has provided beneficial
insight intomore efficient planning (Geißler, 2013). Furthermore, an action plan for a
small capercaillie (Tetrao urogallus) population in the Black Forest in Germany was
created aiming to sustain the population and guaranteeing genetic exchange by
establishing wind energy zoning areas based on the population’s size, breeding, and
nursing areas. This tool minimises unnecessary research and time for wind energy
developers and can be adaptable for any species or region (FVABW, 2013).

Micro-Siting

Additional to the geographical and topographical facility location, choosing the
turbine layout and design of the facility is just as crucial. To avoid turbine col-
lisions, the best recommendations are to avoid flight corridors (Hüppop et al.,
2006), place turbines parallel (not perpendicular) to flight direction (Drewitt and
Langston, 2006), and arrange turbines in clusters or rows (Smallwood and The-
lander, 2005; Larsen and Madsen, 2000). The spatial arrangement of turbines
within the facility is otherwise known as micro-siting. Similar to macro-siting,
micro-siting research recommendations have been based on observations but few
based on investigative research.

For birds, it is important to understand flight corridors and establish spatial
buffers away from these areas, or provide corridors between the clusters of turbines
aligned with main flight trajectories for species to fly through (Drewitt and
Langston, 2006). Drewitt and Langston (2006), Hüppop et al. (2006), and
Smallwood and Thelander (2004) further recommend grouping turbines to avoid
alignment perpendicular to main flight paths or known bird movements, and
Johnson et al. (2007) recommend ‘stringing’ turbines with known avian flight
paths without inputting any breaks or gaps which could tempt birds to fly through
the facility instead of over the string of turbines.

For bats, an investigation was done in Alberta, Canada by Baerwald and
Barclay (2011) in better understanding weather variables and turbine location on
the activity of hoary (Lasiurus cinereus) and silver-haired bats (Lasionycteris

Mitigation Measures for Wildlife in Wind Energy Development: Part 1
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noctivagans). In terms of spatial arrangement, bat fatalities did not vary with the
turbine position in the row but did vary within turbine position within the wind
facility. They noted higher mortality in the northern part of the facility than
the southern part while fatalities on the east and west were the same (Baerwald
and Barclay, 2011), thus concluding the need for land developers to gain a full
understanding offlight directions of species to better place turbines within the facility.

Drewitt and Langston (2006, 2008) advise to site turbines in either clusters or
rows to reduce the development footprint on wildlife and the landscape. Dai et al.
(2015) state for birds and bats that it is easier to create a balanced, simple, and
consistent wind facility using the fewest number of turbines and establishing a
simple layout such as a double link, triangle, or grid for regular landscapes (i.e.
open or level space). This ‘regular layout’ recommendation by Dai et al. (2015) of
a facility is beneficial in increasing the busy appearance of the wind facility and
may discourage birds from flying into this airspace. Particularly for raptors, as
observed by Smallwood and Thelander (2004, 2005), they avoid operating tur-
bines as well as densely packed turbine fields. Krone et al. (2014) recommends a
compact arrangement of the turbines instead of widely scattered turbines to reduce
fatality numbers. Yet as May et al. (2015) states, clustering remains unclear as
even though the turbines will be tightly together taking up less topographical area,
the area itself becomes completely unaccessible as the reduced openness would
limit any sort of movement.

Offshore, research into effective placement of turbines within a facility (e.g.
rows, clusters, etc.) lacks. BioConsult and ARSU 2010 researched bird migration
on the Island of Fehmarn, Germany, finding individual birds and small flocks of
birds fly through permeable wind facilities, i.e. when distances between turbines is
large enough. As offshore migrating paths are often used by large flocks, which
tend to completely avoid wind facilities, the alignment of turbines should take
these flight paths into account. Offshore modelling by Masden et al. (2012) for the
common eider (Somateria mollissima) recommends arranging turbines in clusters
as these birds were more likely to avoid a group of turbines than a single row of
turbines. It is recommended by Hill (2015) to restrict the number of offshore
buildings so as to minimise impacts, but no investigations or recommendations
currently provide effective micro-siting measures.

Facility Characteristics

When designing the wind facility, there are a number of technical factors to take
into account such as the design (i.e. tower type), size (i.e. vertical extent and height
of the rotor swept area), and visibility (i.e. lighting and tower colour). These
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factors are dependent upon where the facility is to be developed as weather pat-
terns, wildlife movement, and facility size determine which turbine model and
design are most appropriate as well as based on country and industry targets.

Facility design and size

Self-supporting tubular towers (Manville II, 2005; Johnson et al., 2007) have
become standard in wind energy development as the use of lattice towers can
allow birds to perch and nest, increasing blade collision risk. It is recommended to
adjust the turbine tower height ‘where feasible’ (Manville II, 2005) as the rotor
swept area is the greatest risk to birds and bats. Through investigation by Gra-
jetzky and Nehls (2014), turbine height influences collisions risk. For some birds,
taller towers in combination with certain turbine types are recommended as their
flight trajectories can be below the rotor swept zone. An investigation done by
Krijgsveld et al. (2009) studied the collision rate of birds with 78m height turbines
to old-generation turbines (67m) in the Netherlands, concluding the number of
individuals were similar but the overall risk was three-fold lower in terms of
comparing the large rotor surface and higher altitude range. Birds are more able to
fly below the rotor swept zone and, with turbines being more spread out due to
their size, are also able to pass safer between the turbines (Krijgsveld et al., 2009).
Lower collision risk with more modern turbines can also be due to the slower
speed of rotor revolutions (Krijgsveld et al., 2009; AWWI, 2015), but further
empirical and comparative research is needed.

In terms of facility design, Schaub (2012) investigated the relationship between
collision risk of the red kite and the distance between wind turbines and kite’s nest
location, providing through simulations that ‘the larger the number of wind tur-
bines and the more they were spread out in the landscape, the more depressed the
population growth rate became.’ It is recommended to conduct small-scaled im-
pact studies when planning new wind facilities but at larger spatial scales so as to
minimise impacts (Schaub, 2012).

However, investigations by Arnett et al. (2008), Barclay et al. (2007), and
recommendation by Northrup and Wittemyer (2013) state shorter towers be
installed to reduce impacts on bats. This is a concern for repowering as turbines
are, while fewer, becoming larger with rotor blades within the movement heights
of migratory bats. Additionally, it is important to note that tower type and height
varied [50–80m (Barclay et al., 2007) and 50, 65, or 78m (Arnett et al., 2008)]
during their research and current modern turbines range in height from 60m to
80m (200–260 ft) with blade tips reaching over 140m (460 ft) (AWWI, 2015) in
the US. However in Europe, 160–170m is average with single turbines reaching
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up to 200m (Deutsche WindGuard GmbH, 2015), implicating some research
cannot directly apply to new facility developments. Mitigation measures should be
centred on turbine height and blade size when considering facility characteristics,
and centred on which at-risk species may fly through the facility.

Offshore, the use of floating turbines (Bailey et al., 2014) or gravity foundation
turbines (Skeate et al., 2012) can be an option in selecting turbine models, but
currently most involve direct foundation into the sea floors. Nevertheless, height and
design of the turbine are crucial depending on a number of factors, including bird
and bat flight heights and species’ distribution. It is also important to take into
account the fluxes of particular species as weather (visibility and temperature), time
of day (or night), and flight pattern (migrant or seabird) should be factors incor-
porated into the design and height of offshore turbines (Fijn et al., 2015). This can be
important during bad weather conditions, as all birds tend to fly lower or try to land
at illuminated areas (Bellebaum et al., 2010). Johnston et al. (2014) investigated
flight heights of marine birds in correlation to turbine hub heights. It is recom-
mended to use larger (and fewer) turbines with increased turbine heights to lower the
proportion of birds at risk of collision (Johnston et al., 2014). Similar can be said for
migratory birds, as their flight is above turbine heights, 400m above sea level with
head winds and up to 1000m high with tail winds (Bellebaum et al., 2010).

Increased visibility

There still lacks proper scientific evidence on which patterns or colours are most
efficient in triggering an avoidance behaviour for species passing by or through the
wind facility. Yet, some research has been conducted on measures to reduce
motion smear and thus increase visibility for birds. Hodos (2003) and Hodos et al.
(2001) experimented with a variety of patterns for the American kestrel (Falco
sparverius) such as a staggered-strip pattern, single-coloured blades, and various
colour contrasts. It was recommended a single solid black blade is the most visible
stimulus, but this was not tested in a field setting and not tested on other species
or with moving backgrounds. Other recommendations include use of high-contrast
patterns for turbine blades (Dai et al., 2015; Drewitt and Langston, 2006), or
UV reflective paint (Cook et al., 2011; Young et al., 2003; Curry and Kerlinger,
2000; Johnson et al., 2007). UV reflective paint would not reduce motion smear
but help in ‘flight around’ behaviour (as observed by Curry and Kerlinger (2000))
as at least 30 species can see UV light (Johnson et al., 2007) and can be helpful
in increased visibility under a variety of conditions (Johnson et al., 2007).
However, this topic deserves further investigation as some have shown no sta-
tistically significant differences between fatality rates for UV and non-UV turbines
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(as observed by Young et al. (2003)). There is also recommendation of lowering
the rotor speed or repowering to larger turbines for increased visibility (Cook
et al., 2011; Dai et al., 2015). In regards to turbine colour, there was an investi-
gation in Germany by Dürr (2011) into tower colouration relevancy with bird
collisions. He recorded 37 bird deaths at all grey- and white-coloured turbine
towers and no deaths at those with a green-coloured bottom gradient fading into
white or grey upwards, thus determining turbine colouration is significant. This
can be particularly significant for breeding birds as they do not see the light
turbines as an obstacle when they take off in flight from the ground nearby, thus
increasing their collision risk with the tower.

In summary, strong recommendations have been made and are currently in use
(i.e. tubular towers) but there are still variations in turbine design. Both onshore
and offshore, mitigation relating to the height of the rotor swept area needs to be
determined based on the conservation priorities relating to the species most likely
to be affected. For increased visibility, it is recommended to use a variety of
methods together as the largest problem of visibility occurs during poor weather
conditions (Johnson et al., 2007). Using inverse LED plates, letters, and numbers,
self-reflective material are other suggested methods (Blew et al., 2013). Metadata
from facility designs could give better insight into how efficient colouration,
heights, patterns, and visibility factors influence wildlife.

Construction Minimisation

Construction has a higher concentration of human activity, vehicle transportation,
and noise as well as a general loss of the environment, thus mitigation measures
which differ during operation and maintenance are needed. Additionally, con-
struction impacts not only include the erection of the turbine, but also the creation
and use of roads, substations, and maintenance facilities (Lovich and Ennen,
2013); thus, mitigation should include measures needed for these additional
impacts (Rodrigues et al., 2006). It is important to note, construction impacts are
not always limited during this period, and can overlap or persist into the opera-
tional period. Mitigation measures during this time can be establishing environ-
mental rules for contractors or establishing efficient supervision (Ledec et al.,
2011), instituting restrictions of movement or activity during specific periods (i.e.
time and seasons) to reduce disturbance (Drewitt and Langston, 2006), and
establishing barriers to not only limit wildlife from coming into the facility but also
limit human activity from expanding beyond the workspace (Pearce-Higgins et al.,
2012). Barriers also include noise mitigation systems, particularly for offshore
wind facilities.
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For instance, bird populations can be impacted during construction and some do
not recover after, as was observed in the UK by Pearce-Higgins et al. (2012).
Analysing 10 bird species between 18 wind farm sites and 12 reference sites, results
exhibited the main negative effects on upland species populations is through dis-
turbance displacement during construction, yet there were some positive effects
after construction on a couple of species as the vegetation had shifted benefitting
their survival. Conclusively, they recommend constructing barriers or screens to
limit the disturbance zone, or establish times or places to avoid during breeding
times (Pearce-Higgins et al., 2012), but do not evaluate the effectiveness of each.
An investigation by Shewring et al. (2015) provides a best practice measure during
the construction period establishing exclusion zones based on active nesting sites of
nightjar (Caprimulgus europaeus) in Wales, minimising disruption or any damage.

For bats, EUROBATS (Rodrigues et al., 2006, 2014) established guidelines for
the planning process and impact assessments, including the construction period.
They recommend local knowledge on the site and species that could become
displaced and construction only be planned during times of the day or parts of the
year when bats are least active and not in hibernation (Rodrigues et al., 2014). As
their loss of roost sites would occur during construction, an additional recom-
mendation from English Nature (Mitchell-Jones, 2004) includes establishing
alternative roosts for species to return (Rodrigues et al., 2006).

For non-volant species, the destruction and modification of wildlife habitats,
e.g. ground disturbance, is highest (Lovich and Ennen, 2013): Soil compaction
from heavy machinery can collapse burrows and crush small wildlife (Lovich and
Ennen, 2011); roads can affect species richness and increase the possibility of
vehicle strikes (Bissonette and Rosa, 2009; Lovich and Ennen, 2013). Conclu-
sively, there is no empirical research into how to mitigate any of these impacts
during construction on wildlife around (and to) wind facilities or specific turbines.
There are, however, brief recommendations from two sources for two different
species: One for reindeer (Rangifer tarandus) in Norway, where construction
should occur during the time of the year when they are not in the area (May et al.,
2012), and the second for the Iberian wolf (Canis lupus signatus) in Portugal with
recommendations to close network roads to reduce traffic and human disturbance
and to protect breeding sites (>2 km radius) during site selection and construction
period (Álvares et al., 2011).

Offshore behavioural impacts have shown that most impacts occur during
construction (Verfuß, 2014; Scheidat et al., 2011; Russell et al., 2015). Research
has provided some insight into mitigation measures such as spatial and temporal
closure of areas (e.g. vessel restrictions (Simmonds and Brown, 2010)), deterrence
of species at risk (Lucke et al., 2011; Bergström et al., 2014), and noise mitigation
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systems (NMSs) to avoid acute injury on marine mammals (Bellmann et al.,
2015). It is recommended to establish restrictions during specific periods (e.g.
breeding, migration, spawning, recruitment, calving, and feeding) to reduce dis-
turbance (Drewitt and Langston, 2006; Bergström et al., 2014; Sea Mammal
Research Unit, 2009). For example, the German Federal Ministry for the Envi-
ronment (BMUB) developed a “noise prevention concept” providing recommen-
dations to avoid disturbing and killing of harbour porpoises. It is prohibited to
disturb them during their sensitive breeding season (May–August). Outside of this
season, a sufficient noise exposure buffer is still required and only 10% of the EEZ
should be within the construction noise impact zone (BMUB, 2013). Other
recommendations state boats, helicopters, and personnel use timed and specific
routes to reduce disturbance (Drewitt and Langston, 2006; Simmonds and Brown,
2010). One investigation by Hammar et al. (2014) on Kattegat Atlantic cod
(Gadus morhua) in the Baltic Sea and the North Sea advises a specific time period
(December–June) in which pile-driving and construction activities be avoided.

Regarding NMSs, there is no ‘off-the-shelf’ method for minimising sound
impacts during construction, namely during pile-driving (i.e. when towers are
installed into the seabed) (Matuschek and Betke, 2009). Thus, precautionary
actions have been established as well as technological advances which can deter
wildlife away from the area before harmful noise impacts occur, and to reduce
sound impacts when they are occurring. Recommendation primary to the use of
mitigation technology include adjusting piling energy based on soil properties to
reduce piling noise or impulse prolongation, altering the shape of sound impulses
and thus reducing noise lengths (Verfuß, 2014). In Germany, the BMUB does not
only set standards regarding spatial and temporal construction restrictions, but also
deterrence measures and NMSs (BMUB, 2013).

In addition to NMSs, the use of ‘soft start’ (or ‘ramp-up’) has been recom-
mended to gradually increase sound intensity, giving marine wildlife time to leave
the area (Bailey et al., 2014; Teilmann et al., 2012; Tougaard et al., 2012).
However, it is important to note, soft start has been commonly implemented (Sea
Mammal Research Unit, 2009) but lacks empirical research into its effectiveness.
This can be a concern, as harbour seals (Phoca vitulina) may not be able to move
away quick enough before noise levels reach auditory damage (as observed by
Russell et al. (2014, 2015)). Additionally, the use of deterrents before pile-driving
have been recommended, including an acoustic ‘startle’ system, pingers, seals-
carers, compact autonomous military devices, and loudspeakers (Madsen et al.,
2006; Gordon, 2012; Brandt et al., 2011), but the effectiveness of each is not well
known. Additionally, the use of sealscarers may not be as effective today due to
more effective noise mitigation techniques as stated by Brandt et al. (2013, 2014).
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New technologies, such as FaunaGuard (acoustic deterrence device), are be-
coming implemented at OWF, but results of their effectiveness are not yet avail-
able (van der Meij et al., 2015). Other means can be used based on passive
acoustic monitoring, or Marine Mammal Observers (MMOs) (Bailey et al., 2010,
2014; Thompson et al., 2010) to reliably detect the presence of animals in real time
and to alert the OWF operator when particular species are in the area and to halt
construction activities. Höschle et al. (2015) tested a Wireless Detection System
(WDS) with porpoises within 200m distance during the installation of 48 piles in
the German North Sea, providing another technique to deter species away before
pile-driving. For seals, Gordon et al. (2007) stress that neither visual nor acoustic
monitoring are effective detecting methods as they do not often vocalise and can
be hard to see at surface. As for secondary mitigation measures, there are a number
of technological advances that have reduced noise impacts, such as bubble cur-
tains, shell-in-shell systems or castings, hydro sound damper (HSD), and coffer-
dams (Verfuß, 2014; Bellmann et al., 2015). The use of bubble curtains (Big
Bubble Curtain [BBC], in particular) is considered most effective through research
investigations, particularly with harbour porpoises (Phocoena phocoena) (Matu-
schek and Betke, 2009; Würsig et al., 2000; Koschinski and Lüdemann, 2013;
Lucke et al., 2011; Wilke et al., 2012; Schubert et al., 2015). Schubert et al.
(2015) investigated that a BBC reduced the disturbed area by 90% from 700 km2

to only 70 km2. Bellebaum et al. (2015) and Philipp (2015) investigated different
NMSs and found that a combination of Noise Mitigation Screen (IHC-NMS) and
BBC methods can be most effective. While there is no 100% noise mitigation
measure, it is important to take this into account offshore as even little noise can
have an impact on communication, behaviour, foraging, and reproduction of
marine mammal populations (Dähne et al., 2013).

One concern offshore, not only during construction, is the cumulative effects
noise impacts can have on marine mammals, fish, and benthos (Pine et al., 2014;
van Opzeeland, 2014). Another concern is the influence of electromagnetic
(EM) fields and what mitigation measures can be most effective (Gill et al., 2014;
Bergström et al., 2014; Öhman et al., 2007). These are areas of further study, as
well as incorporating mitigation measures into the construction phase without
delaying the process or extending beyond economic constraints.

Discussion

In providing a comprehensive understanding of where current research and
practice lies, a significant point to be made is the lack of evidence into the efficacy
of each mitigation type. This is primarily due to the lack of research and varied
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research methodologies. Nevertheless, Appendix A provides synoptical tables of
current peer-reviewed mitigation research at all stages for all relevant species
(Tables A.1 and A.2), visualising where the gaps in research are persistent. Below,
each mitigation type is construed based on the peer-reviewed and grey literature
within planning, siting and construction:

(1) In terms of macro- and micro-siting, these phases are key in avoiding critical
habitats during the planning stage. Sensitivity mapping, regional planning, and
local zoning can be effective forms in reducing impacts, but research under-
standing the balance between macro- and micro-siting could be beneficial in
future planning. Offshore, similar can be done in establishing a strategic
marine planning framework allowing more efficient opportunities for adopting
new areas and licensing for wind facilities, as can be seen in Scotland with the
development of a Sectoral Marine Plan (see Sec. 3.2) (Davies and Pratt, 2014).

(2) Facility characteristics show some investigative research into the design and
height of wind facilities and their increased visibility, but further empirical
evidence is needed. With the wind industry continuing to grow their turbines
in height and rotor diameter for more efficient energy generation, research
must adapt and provide meaningful recommendations. In addition, these type
of mitigation measures should continue to line up with other requirements
(e.g. aviation and shipping lighting) as well as fall in line with public interests
and agreements (e.g. turbine colour).

(3) Reduction measures during construction focus most on sound barriers off-
shore for marine mammals and lack for other species groups. This can be due
to research and monitoring focusing on impacts during construction, so
continued research into effective measures is needed. Measures can be better
implemented if more standards during the construction stage are given, e.g.
one concern is the lack of EU standards for offshore noise mitigation measures
(Müller and Zerbs, 2013).

Based on Appendix A, Table 1 provides a numerical table of peer-reviewed
sources aligned as ‘recommendation’, ‘observation’, and ‘investigation’. However,
we further this in categorising the measures and species group that are ‘known’ (in
black) when there are three or more investigations, ‘somewhat known’ (in dark
grey) when there is at least one observation or one investigation, ‘unknown’ (in
white) when there is no research at all, and ‘unknown but recommended’ (in light
grey) when there is no observational or investigative research.

In regards to this visualisation, it is important to acknowledge how peer-
reviewed research lacks perspective in the current state of knowledge, as reports
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and grey literature have been substantial in developing and understanding miti-
gation measures. A similar table is found in “Mitigation Measures for Wildlife in
Wind Energy Development, Consolidating the State of Knowledge — Part 2:
Operation, Decommissioning.” Certain notable approaches have a higher coverage
through grey literature. One example is land management for raptors in Germany,
as much research was initiated from field experts improving management strate-
gies based on experience, and not from scientific research. Immediate field ap-
plication indicated if measures were successful or not. Thus, this is an important
documentation of measures directly implemented in the field that have not yet
been scientifically investigated and published.

The discussion on mitigation topics of operation and decommissioning are
within the article Mitigation Measures for Wildlife in Wind Energy Development,
Consolidating the State of Knowledge — Part 2: Operation, Decommissioning, as
well as an outlook for the future in terms of all land-based and offshore mitigation
measures for wildlife in wind energy development.

Table 1. Mitigation measures and species group — what is known (in black), somewhat known
(in dark grey), unknown (in white), and unknown but recommended (in light grey). Based on over
105 peer-reviewed sources, numbers are aligned as recommendation, observation, or investigation.

Wind energy
measures and
species groups

Migratory 
bats

Bats (land-
based and
general)

Migratory 
birds

Birds (land-
based and
general)

Raptors Seabirds Marine 
mammals

Fish and
benthos

Use areas of 
low spatial 
resistance

0 1,0,0 1,0,2 5,1,0 0 2,0,0 0 0

Avoid high-
quality 

habitats, sig. 
topography

0,1,0 2,0,2 1,0,0 3,0,1 3,1,1 0 0 0

Turbine 
arrangement 

and placement
0 1,0,1 1,0,0 4,0,0 0 0,1,0 N/A N/A

Facility design 
and size

0 1,0,2 0 2,0,1 0,0,1 1,0,1 0 N/A

Increased 
visibility

0 1,3,0 1,0,0 4,0,1 1,0,0 0 N/A N/A

Construction 
time 

restrictions
0 0 0 1,1,0 0 0 3,0,0 0,0,1

Construction 
sound, physical 

barriers
N/A N/A N/A 0 0 N/A 3,1,2 0
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